

Mode coupling by convection as possible contribution to the surface effect

Markus Roth

SCORe'16 Workshop Aarhus October 5, 2016

European Research Counci

Advection reduces the frequencies

Brown (1984) investigated the effect of **stationary** velocity perturbations on high-frequency p-modes:

The inhomogeneous velocity in the convection zone modifies the wave propagation

- Wave scattering
- Slowing of mean wave front

Happens wherever there are flows; not only near the surface.

Near-surface flows have highest amplitudes erc

Fig. 1. Difference between eigenfrequencies ω_0 and ω_p computed, respectively, without and with vertical turbulent velocities, plotted as a function of ω_0 . The frequencies with turbulent motions are always smaller than those without, leading to positive differences.

Stix & Zhugzhda (1994):

Structured atomsphere with constant pressure

Flow velocity, temperature and density are functions of the horizontal coordinate x

Fig. 1. The model of alternating vertical layers

Calculations

Equations for a vertical wave of frequency w and wavenumber k_z

the hydrodynamical equations are:

$$\frac{\partial t}{\partial t} + (\mathbf{v} \cdot \mathbf{v})\mathbf{v} = -\frac{\partial t}{\rho_0} \mathbf{v} \, \partial p, \tag{1}$$

$$\frac{\partial \delta \rho}{\partial t} + \rho_0 \operatorname{div} \mathbf{v} + \mathbf{V} \cdot \nabla \delta \rho + \mathbf{v} \cdot \nabla \rho_0 = 0, \qquad (2)$$

$$\frac{\partial \delta T}{\partial t} + \mathbf{v} \cdot \nabla T_0 + \mathbf{V} \cdot \nabla \delta T + (\gamma - 1) T_0 \operatorname{div} \mathbf{v} = 0, \tag{3}$$

Can be reduced to a wave equation:

$$C_0 \frac{1}{dx^2} + \left[\frac{1}{dx} + \frac{1}{V_{ab}} - \frac{1}{V} \frac{1}{dx} - \frac{1}{V_{ab}} - \frac{1}{V} \frac{1}{dx} + \frac{1}{V_{ab}} \frac{1}{dx} + \frac{1}{V_{ab}} \frac{1}{V_{ab}} - \frac{1}{V} \frac{1}{V_{ab}} \frac{1}{V_{ab}} - \frac{1}{V} \frac{1}{V_{ab}} \frac{1}{V_{ab}} - \frac{1}{V} \frac{1}{V_{ab}} \frac{1}{V_{ab}} - \frac{1}{V} \frac{1}{V_{ab}} \frac{1}{V} \frac{1}{V_{ab}} \frac{1}{V_{ab}} \frac{1}{V} \frac{1}{V_{ab}} \frac{1}{V} \frac{1}{V_{ab}} \frac{1}{V} \frac{1}{V$$

With solution

erc

Results

 Brown (1984); Stix & Zhugzhda (1994): "In the ... medium the mean wave phase speed is not the same as the phase speed of the mean medium"

$$\frac{1}{\bar{V}_{ph}} = \frac{1}{2} \left(\frac{1}{V_{ph+}} - \frac{1}{V_{ph-}} \right)$$

 Mean phase speed defines the eigenfrequencies of a structured atmosphere

$$\frac{\Delta \omega}{\omega} = \frac{\int c_{mod}^{-1} dr}{\int \bar{V}_{ph}^{-1} dr} - 1 \; . \label{eq:dispersive}$$

Frequency Shifts for Radial Modes

Effect could be strong enough to correct the frequencies.

Fig. 6. Frequency difference between calculated and observed radial solar p modes (*dots and circles*), and (negative) frequency corrections for $\lambda = 0.7$ and three values of the size factor, f_S (*solid curves*)

(Stix & Zhugzhda 1994)

Convection Rolls

• Stix & Zhugzhda (2004)

Fig. 1. The model of a layer with convection rolls. The horizontal period is used to define the unit of length, $2d/\pi$.

$$\frac{\Delta\omega}{\omega} = \frac{\int c_0^{-1} \,\mathrm{d}r}{\int [c_0(1 - Ma(r)^2]^{-1} \,\mathrm{d}r} - 1$$

Frequency Shifts for Non-Radial Modes

 Remark in the Conclusions of their paper: change of granulation size to explain cycle-dependent frequency shift?

Fig. 3. Frequency correction for solar p modes, calculated with the harmonic model. The label is the degree l of the mode; the size parameter is $f_S = 2.5$.

(Stix & Zhugzhda, 1998)

erc

European Research Counci

Another Approach: Perturbation Theory

Following the approach described by Lavely & Ritzwoller (1992)

Perturbing the equilibrium model with a **slow** flow, i.e. **small perturbation**

$$-\omega_k^2 \rho_0 \xi_k = -\nabla p_1 + \rho_0 g_1 + \rho_1 g_0$$
$$-\omega_k^2 \rho_0 \xi_k - 2i\omega_k \rho_0 (\mathbf{v} \cdot \nabla) \xi_k = -\nabla p_1 + \rho_0 g_1 + \rho_1 g_0$$

$$-\rho_0 \omega_k^2 \xi_k = H_0(\xi_k) + \varepsilon H_1 \xi_k$$

Mode Coupling: Perturbation matrix elements for calculation of new eigenvalues

$$H_{k'k} = \langle \xi_k | 2i\omega_k \rho_0(\mathbf{v} \cdot \nabla) | \xi_{k'} \rangle$$

= $2i\omega_k \int \rho_0 \xi_k (\mathbf{v} \cdot \nabla) \xi_{k'} d\mathbf{r}$

Eigenvalues of perturbation matrix are frequency corrections:

$$\tilde{\omega}_k^2 = \omega_k^2 + \delta \omega_k^2$$

Flow Modelling

Decomposition into a

- toroidal flow (includes differential rotation) and
- poloidal flow (includes meridional flow, giant cells, supergranulation, granules(?))

$$v(r) = \sum_{s=0t=; s}^{X^{t}} T_{s}^{t}(r; \mu; A) + P_{s}^{t}(r; \mu; A)$$

where components are expanded in terms of spherical harmonics

$$T_{s}^{t}(r; \mu; \acute{A}) = i w_{s}^{t}(r)e_{r} \leq r_{h}Y_{s}^{t}(\mu; \acute{A})$$

$$P_{s}^{t}(r; \mu; \acute{A}) = u_{s}^{t}(r)Y_{s}^{t}(\mu; \acute{A})e_{r} + v_{s}^{t}(r)r_{h}Y_{s}^{t}(\mu; \acute{A})$$

Mass conservation:

$$\rho_0 rs(s+1)v_s^t = \partial_r (r^2 \rho_0 u_s^t)$$

Differential Rotation: Frequency Splitting

$$\mathbf{T}(\mathbf{r}) = \sum_{s} \sum_{t=-s}^{s} -w_s^t(r) \mathbf{e}_r \times \nabla_h Y_s^t(\theta, \phi)$$

Differential rotation (s odd, t=0) :

 $\omega_{k(m)=\omega k(m=0)+\delta \omega(m)}$

with $\delta \omega(m) = \sum s = 1,3,5,...cnl,s\gamma nl,s(m)$

where cnl,s=s0 s

 $\underset{cnl,s=s0}{\overset{R w}{\underset{s(r)}{\text{Knl,s(r)}}}} \underset{r}{\overset{2 dr}{\underset{r}{\text{2 dr}}}}$

and

 $\stackrel{\gamma}{}_{nl,s}$ orthogonal functions (Clebsch-Gordon coefficients)

! Inversion problem for ws(r)

Differential Rotation: Frequency Splitting

Lifting of degeneracies

! "Self-coupling" within multiplets, i.e. n'=n & l'=l

Central frequency of a multiplet is **not** shifted!

Antisymmetric around m=0 (in first order perturb. theory)

Effect of a poloidal flow on the eigenmodes

$$\mathbf{P}(\mathbf{r}) = \sum_{s,t} u_s^t(r) Y_s^t(\theta, \phi) \mathbf{e}_r + v_s^t(r) \nabla_h Y_s^t(\theta, \phi)$$

Coupling Matrix:

$$H_{kk'} = \langle \xi_k | 2i\omega_k \rho_0(\mathbf{v}_s^t \cdot \nabla) | \xi_{k'} \rangle, \quad k \neq k'$$

$$H_{kk} = 0$$

$$H_{kk'} = \sum_{s,t} \int_0^R u_s^t(r) K_{st,kk'}(r) dr \mathcal{P}(s,l,l'|s,t,m,m')$$
Clebsch-Gordon coefficients

Frequency Corrections (two mode coupling):

$$\delta\omega_k^2 = \frac{|H_{kk'}|^2}{\omega_k^2 - \omega_{k'}^2}, \quad k \neq k' \text{ Second-order effect!}$$
(Roth & Stix 1999, A&A)

erc

Additional to rotational effect:

Poloidal flows leave signatures in oscillation data as additional frequency shifts

$$\delta\omega_k^2 = \frac{|H_{kk'}|^2}{\omega_k^2 - \omega_{k'}^2}, \quad k \neq k'$$
$$|H_{kk'}|^2 \propto (u^t)^2 \quad \text{Second-ord}$$

 $|H_{kk'}|^2 \propto (u_s^t)^2$ Second-order effect!

- Two coupling modes are shifted with opposite signs
- (approx.) nearest matching neighbor in frequency has strongest influence

Spatial scale of flow & form of I-nu-diagram defines coupling range

Harmonic degree I

European Research Council Established by the European Commission

European Research Counci

Poloidal Flows: Additional Frequency Shifts

Reduced frequencies due to large-scale flows

Example (not a surface effect): Amplified meridional flow $\[\begin{matrix} \mbox{$\Sigma$} \\ \mbox{$\Box$} \] \[\mbox{$\Sigma$} \] \label{eq: Σ} \] \[\mbox{Σ} \] \Label{eq: Σ} \] \[\mbox{Σ} \] \Label{eq: Σ} \] \[\mbox{Σ} \] \[\mbox{Σ} \] \[\mbox{Σ} \] \Label{eq: Σ} \] \Label{eq: Σ} \] \[\mbox{Σ} \] \Label{eq: Σ} \] \[\mbox{Σ} \] \Label{eq: Σ} \] \Label{eq: $Label{eq: Σ} \] \Label{eq: Σ

Frequency reduction is small

Color: radial order

Kiepenheuer-Institut für Sonnenphysik

> All large-scale poloidal flows should result in a similar effect

(Roth & Stix 2008)

- MESA stellar evolution code (Paxton et al., 2011)
- Subgiant stage: He core not ignited, surrounded by H burning shell
- Mass M=1.25 M_{? initial metallicity Z=0.02, age ~4.6 Gyr}
 - Convection zone extends through outer 28% of the stellar radius

- Mixed modes, p-g character
- Computed set of modes from 400 900 μ Hz (observable range for this model) up to I=20
- Frequency scan with GYRE (Townsend & Teitler, 2013)
- Actual mode calculation with ADIPLS (Christensen-Dalsgaard, 2008)

Echelle diagram containing modes of degree l=0,1,2

Typical I=0,2 ridges

l=1 modes: strong mixed behaviour

- Simple approximation for large-scale convective motions
- Velocity field expanded in terms of spherical harmonics (degree: s, azimuthal order: t)
- Spherical harmonic determines the flow "pattern"

Spherical harmonic representation of velocity field u:

- Sinusoidal u t,
- Mixing Length Theory (MLT) velocity as upper limit
- v t below surface 60 m/s s
- Gradients can create high horizontal flow components (not necessary realistic)

- Construct the coupling matrix Z (in state space): Matrix representation of the advection operator in the basis of unperturbed eigenstates
- Solve eigenvalue problem for matrix Z
 - Eigenvalues are the frequency shifts
 - Eigenvectors are the perturbed new eigenstates, i.e.
 linear combinations of unperturbed modes **?mode mixing**

European Research Counci

Frequency Shifts of Dipole Modes

- I = 1 multiplets at 5 different frequencies
- Flow configuration: s = 9, all corresponding t values
- Degenerate triplets split into 2 components
- Distinct pattern depending on t: crossing of m = 0 and m = 1 component, for all triplets
- Shifts are two orders of magnitude lower than typical frequency errors (Kepler data)
- Shifts measurable for realistic flow velocities?
- Magnitude varies for different frequencies

Mean Shift of Triplets, Frequency Dependence

• Shifts dominated by positioning of coupling modes $\sim (\omega_{
m ref}^2 - \omega_{k'}^2)^{-1}$

- Mixed modes: irregular frequency separations, vicinity around a mode is different compared to the Sun.
- Jumps up to an order of magnitude when coupling modes are close

erc

European Research Counci

Transformation into Observer's Inertial Frame (Rotating Star)

- Flow effect for one mode for a star that rotates with $\Omega_{\rm H}(2\pi) = 250 \, \rm nHz$
- Flow velocity u_{1}^{t} increased by factor of 10 (for better visibility) Flow velocity increased by factor of 10 (for better visibility) Dots: theoretical frequency peaks in power spectrum
- Bots: theoretical frequency peaks on power spectrum
- Sizen amphituslemetadvæigen peaks showandspoletnetry
- Main triplet is shifted slightly and shows asymmetry in observers inertial frame Additional peaks belong to modes with $l = 8 \dots 10$ Mixing of percent of additional enditional enditions in observers inertial frame

- Additional peaks belong to modes with
 - ? not observable for unresolved stellar disks

How to make a surface effect with mode coupling

200

0

400

600

800

1000

Sun (& solar-like stars): (Courtesy to SOHO Image Gallery) calculations for smaller spatical scale of 10 flow components - s~o(100) for supergranulation - s~o(1000) for granulation 8 Evolved stars: large convective amplitudes possible 6 v, mHz *Caution:* amplitudes must be small to apply perturbation theory (gradients of radial component to determine 4 horizontal component) Possible solution: No expansion in spherical harmonics 2 $H_{kk'} = H_{kk'} = 2i\omega_k \int \rho_0 \xi_k (\mathbf{v} \cdot \nabla) \xi_{k'} \, d\mathbf{r}^{n, m'}$ n

3D models