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What is the structure of the Sun?

Theory of the internal structure of the stars is based on the
fundamental principles of physics:

Pressure

. and
Energy conservation, Radiation
Mass conservation, Pressure

Momentum conservation

Pressure and gravity are in balance;
hydrostatic equilibrium

O the Sun is stable

A theoretical model of the Sun can be built
on these physical laws.

Is there a possibility to
Llook inside” the Sun?
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The Sun and the stars exhibit resonance oscillations!

Excitation Mechanism:
Small perturbations of the equilibrium
lead to oscillations

Origin:
Granulation (turbulences) that generate sound

Pressure
and
Radiation

Fressure

14
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The Sun and the stars exhibit resonance oscillations!

Excitation Mechanism:
Small perturbations of the equilibrium
lead to oscillations

Origin:
Granulation (turbulences) that generate sound
waves, i.e. pressure perturbations Pressure :
and -
Radiation

Fressure

The superposition of sound waves lead to
interferences: amplifications or annihilations.

Sun and stars act as resonators

? Fundamental mode and higher
harmonics are possible
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Spectral Energy Density
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Difference between theoretical model on the Sun‘s internal structure and helioseismology: approximately 3%

Transition between radiative interior and convection zone shows most significant differences

(Christensen-Dalsgaard et al., 1985, Nature 315, 378)
(Kosovichev et al., 1997, Solar Phys.170, 43) Antia & Chitre, 1995, Astrophys. J. 442, 434 )



HISTORY OF
SOLAR ACTIVITY

L-'Kls Tachocline Studies with Local Helioseismology  ecorozom

Kiepenheuer-institut
fiir Sonnenphysik

POLAR ICE

(a) 1.0 60N

0.8
0.7
0.6

A 15N

- 158

0.9
1.077 608

Figure 11. Same as panels (c¢) and (d) in Figure 9, but for the combined inversion
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of the surface- and deep-focusing measurements.

North-South asymmetry

Sound speed perturbation at the base of the
convection zone is not uniform

Clear dip around the equator

Stronger sound speed perturbation at higher
latitudes

(Zhao et al. 2009 AplJ)
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The Sun rotates differentially: The Sun has a meridional flow:
Equator rotates faster than the On the surface the flow is poleward
polar regions v?15m/s

Surface flow must sink inward at poles
and return to the equator at some depth



HISTORY OF
L ‘ Th l_ D SOLAR ACTIVITY
S r y n m RECORDED IN
Kiepenheueﬁ!tit% e O a a O POLAR ICE
fiir Sonnenphysik

Flows inside the Sun are important for solar dynamo action:

A possible solar/stellar dynamo

* At cycle minimum:
a dipolar field threads through a shallow layer below the surface.

* Differential rotation shears out this dipolar field
to produce a strong toroidal field
(first at the mid-latitudes then progressively lower latitudes).

* Around solar maximum:
Buoyant fields erupt through the photosphere forming,
e.g. sunspots and active regions

* The meridional flow away from the mid-latitudes
gives reconnection at the poles and equator.

The Sun’s internal rotation
and meridional flow need to be measured

(Babcock, 1961; and later developments)
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Equation of motion for sound waves: LE, = —powi,

Flow induces advection of the sound wave: £1&, = —2iwipo(u- V)&,
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| Perturbation of wave eigenfunction and eigenfrequency
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Global Diagnostics for Different

Flow Geometries
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Migration of magnetic activity

1960 1970
Observations

(Figure: R. Arlt)

Dynamomodel

Differential Rotation

Classical helioseismic
approach:

Toroidal axissymmetric flows

(differential rotation)

measured from frequency

splittings
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= | Analysis of SoLAR ACTINTY
KIS
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New:

Toroidal & Poloidal flows to be measured by measuring eigenfunction perturbations
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Bottom of
convection zone —
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Long-term North-South average derived from 12 years of SOHO/MDI observations
of “frequency splittings” (Howe 2009):

] - Below the surface:
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2 XX _ 2000 km/h
Tachocline:

Shear layer at the bottom of the convection zone is important for generation of
toroidal magnetic field

Higher latitudes & deep interior?
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Here we difference rotation inversions relative to
solar minimum at successive 1-year epochs. The
evolution of the rotation rate in the whole
convection zone can be seen.
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Torsional oscillations Flow residuals + unsigned magnetic field (Howe et al. 2013)

* Temporal variations around mean
rotation - equator/poleward
propagating branches

* 1% of mean rotation

latitude

2000 2005 2010

* Extends to the bottom of the St
convection zone 7=0.95Rgyy
' 2 3

(e.g. Vorontsov et al. 2002)

latitude
6 Q/2n (nHz)

Precursor for upcoming surface activity?
(Howe et al. 2011, 2013,
Komm et al. 2014)

2000 2005 2010
Date (years)

Connection to merdional flow? Solar minimum “Onset” of activity (surface)
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Prolate strucure of tachocline? Difference between 0° and 60°: 0.012£0.002 Rsun (GONG); 0.040%£0.003 Rsun(MDI)
(Antia & Basu, ApJL, 2011
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l | Differential Rotation from SOLARACTIVITY
KIS
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* Sensitive to antisymmetric rotation rate component (“frequency splittings® are not!)
* Interesting for differential rotation studies in depth

(Schad & Roth., in prep.)
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At mean latitudes, there might be a quasi-periodic oscillation near the bottom of the
convection zone.
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(See Howe, R., et al., Science, 2000)
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Magnetic butterfly diagram
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* Essential element of flux transport dynamo models
(Wang & Sheeley 1991, Choudhuri et al. 1995, Dikpati & Schissler 1999,... )

* Location & amplitude of return flow determines timing and strength of solar activity cycle
(Hathaway et al. 2003, Dikpati et al. 2004,...)

*  Where is the return flow?

> Measurement of the flow profile in depth helps to constrain models/simulations of
dynamo & convection zone (Dikpati et al. 2006, Miesch et al. 2012,...)
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Comparison of Meridional Flow Measurements
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Various Results:

]
* Single cell (Jackiewicz et al 2015., Rajaguru et al. 20%,

Double-cell flow (Zhao et al. 2013)
Multiple “cells” (Schad et al. 2013);

incorporating mass conservation to TDA (Rajaguru et
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Helioseismic results with multiple cells (depth, latitude) have r .

inspired new dynamo simulations
(e.g. Hazra et al. 2014, Belucz et al., 2015)

Multiple cells produce solar-like dynamos given there is an
equatorward flow near BCZ

(Jouve et al. 2007, Hazra et al. 2014, Choudhuri 2015, Passos et
al. 2016)

HD convection simulations — Sun at transition from single to
multiple meridional flow cells with anti-solar (poles faster) to solar
rotation (poles slower) profile

(e.g., Featherstone et al., 2015)

b) Toroidal field at 0./R_(c) Radial field at 1.0R
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(Featherstone et al. 2015)
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Helioseismology provides insight on tachocline region
* Always an average over time & longitude

* Classical helioseismology in addition averages over North &
South

* New methods are under development tc
tachocline region

In Future:
Hope on Solar Orbiter to provide
DosSSiblities for stereoscopic seismoloqgv

(Roth, 2007)
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