

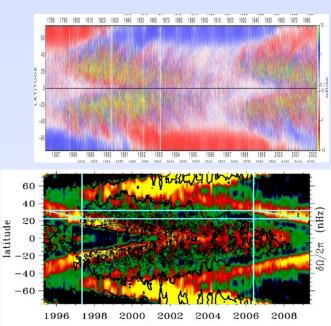
5. Nationaler Weltraumwetterworkshop

The Solar Physics Research Integrated Network Group – SPRING

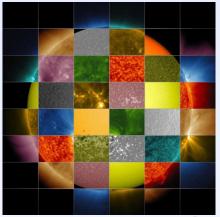
Markus Roth Leibniz-Institut für Sonnenphysik

September 21, 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824135.


The Need for Synoptic Observations of the Sun

• Long term monitoring of the solar magnetic fields


- to understand solar dynamo
- evolution with solar cycle (polar and active region fields)
- Active region evolution for space weather studies
- surface flows via feature tracking

• Long term monitoring of velocity fields

- Sub-surface flows via helioseismology
- solar cycle variations and relationship to solar dynamo
- Flows beneath emerging flux regions and active regions for space weather studies
- Context imaging for next generation high-res telescopes such as DKIST and EST
 - Large scale effects (flares, filament eruptions) of small scale events such as flux emergence
 - Technically a fulldisk image could support the pointing system

Date (years)

Current synoptic facilities cannot serve all these new demands!

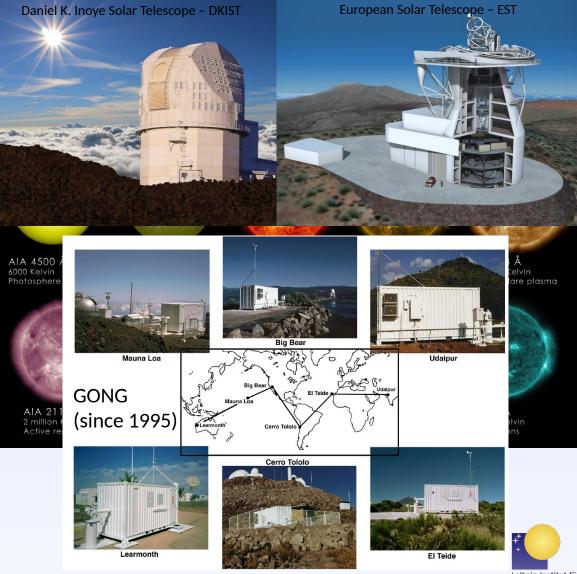
Science Drivers for Solar Physics – Purposes of Synoptic Observations

- How is the solar magnetic field generated, maintained and dissipated?
 - Discriminate solar dynamo models
 - Determine the characteristics of angular momentum transport inside the Sun
 - Observe, identify and characterize magnetic reconnection
 - Determine the role of induction effects near the surface for the global field
- How are the solar corona and the solar wind maintained and what determines their properties?
 - Observe, identify and characterize acoustic and magneto-acoustic waves in the upper atmosphere
- What triggers transient energetic events?
 - Determine the role of the interaction of interior flow and magnetic fields
 - Establish reliable space weather prediction
- How does solar magnetism influence the internal structure and the luminosity of the Sun?
 - Compare the Sun with stars with differ in magnetic activity through asteroseismology
 - Determine impact on exoplanet detection and characterization

SOLARNET

The Many Facettes of Solar Activity

Solar activity can only be understood by


- Obtaining height information
 - multi-line observations
- Small-scale induction effects
- Large-scale interdependencies

New instruments on the ground:

DKIST - high-resolution (commissioning) EST - high-resolution (planning phase) SPRING - full-disk (design phase) worldwide effort to replace GONG

In Europe:

Joint instrument development under H2020 Project SOLARNET (PI: M. Roth); 10 M€ 35 partners (31 EU incl. Univ. Graz + USA, RUS, JP, CH)

Leibniz-Institut für Sonnenphysik (KIS)

Future synoptic observations: Solar Physics Research Integrated Network Group (SPRING)

Work Package of the **High-resolution Solar Physics Network (SOLARNET)** funded by EU under FP7 (2013-2017) and now under H2020 (2019-2023)

Objective: Development of instrumentation for

- large field-of-view observations of the Sun
- with a ground-based network of solar telescopes

Technical Requirements / Future synoptic telescopes should provide

- Doppler velocity images
- vector magnetic field images
- intensity images
- of the full solar disk

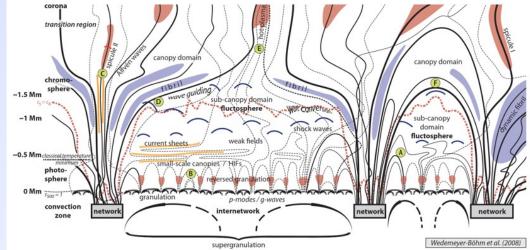
Provide the above data products

- in a variety of wavelengths
- at a high cadence (≤ 60 seconds)
- at a spatial resolution of 1" (0.5" pixels)
- at least 90% of the time
- for at least 25 years

Large International Collaboration (EU, UK, USA, Russia, India)

August 30, 2021

SDO/HMI August 30, 2021



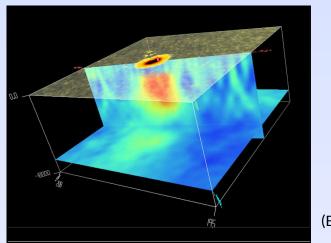
Expected Improvements: Magnetometry

Multi-line high-resolution magnetic observations of the Sun

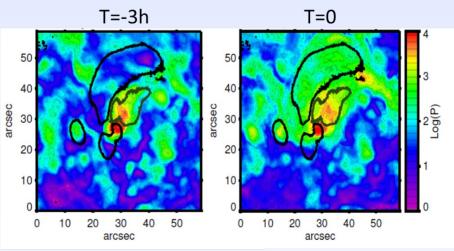
Several Advantages:

- 3-D magnetic topology of active region magnetic fields
- Improved coronal field extrapolations First ground based continuous vector magnetometry for near real time space weather predictions

- Flare related changes in magnetic fields and electric currents in the chromosphere
- Long-term magnetic field records with improved spatio-temporal resolution


Expected Improvements: Helioseismology

Multi-line high-resolution Doppler observations of the Sun


Several Advantages:

- Improved accuracy of helioseismic mapping in vicinity of active regions (Hill 2009).
- Reduction in systematic errors (Baldner & Schou 2012)
- Seismic mapping of solar atmosphere (Wisniewska et al. 2016, Finsterle et al. 2014, Nagashima et al. 2009).
- Transportation of convective energy through solar atmosphere (Jefferies et al. 2006).

See review by Elsworth et al., 2015, Space Sci. Review, 193, 137

(ESA/NASA)

(Wisniewska et al. 2019)

Development Steps

Science Working Groups

- Synoptic Magnetic Fields
- Solar Seismology
- Transient Events
- Solar Awarness

Science Requirement Document

Feasibility Study

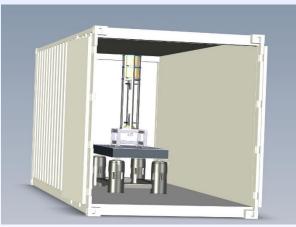
- Front-end telescopes
- Post-focus instrumentation
- Data volumes and processing
- Seeing analysis at GONG sites

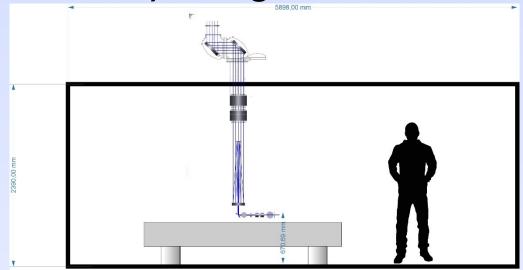
Technical Requirement Document

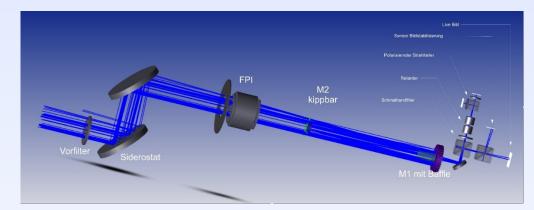
Key Idea: Simplicity

 SINGLE instrument can not do the job complexity would lead to higher costs and low mean time between failures
 MULTIPLE instruments on a single platform is the way to go.

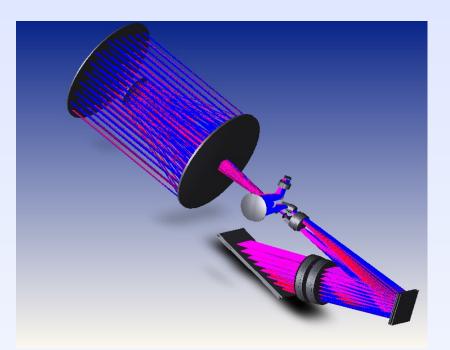
<image/> <image/> <text><text></text></text>	Sources Supervised Sources Supervised Supervised Supervi
SOLARNET	
	PROJECT
ппе	SOLARNET
SOLAR PHYSICS RESEARCH INTEGRATED NETWORK GROUP SCIENCE AND TECHNICAL REQUIREMENT DOCUMENT	TITLE FINAL PROPOSED INSTRUMENT CONCEPTS AND OPERATION PLAN
WORK-PACKAGE (DELIVERABLE NR)	
WYRO SYNOPTIC OBSERVATIONS: SOLAR PHYSICS RESEARCH INTEGRATED NETWORK GROUP (SPRING) D80.1	WORK-PACKAGE (DELIVERABLE NR) WP80: SYNOPTIC OBSERVATIONS: SOLAR PHYSICS RESEARCH INTEGRATED NETWORK GROUP – SPRING (D80.2)
SOLARNET Project Raf: 312495 Co-funded by the European Union	SOLARNET




Preliminary Design

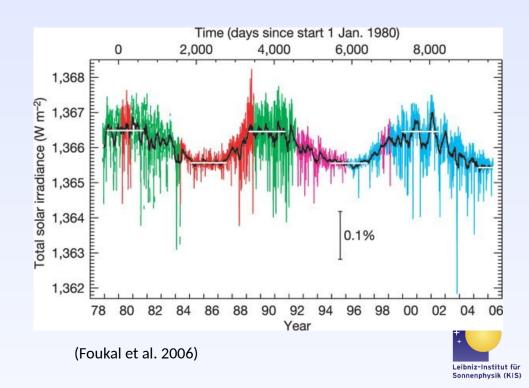

Full-Disk Telescopes + Dopplergraph

- 12 cm aperature
- Multi-line Doppler & spectro-polarimetry measurements
- Filtergraph: Fabry-Perot system


Design developed with industrial partner AMOS

Second Instrument on the Platform

- 50 cm Ritchey-Chrétien telescope + magnetograph
- Post-focus instrument: Multi-slit configuration
- NSO SOLIS telescope as the model
 - Larger detector

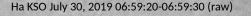


- Coronagraph
 - Investigating outer layers of the Sun
 - -> Coronal Mass Ejections

• Device for Irradiance Measurements

- Total solar irradiance
- Spectral solar irradiance
- Measurements in the near-infrared required at:
 - 855 nm
 - 1055 nm
 - 1083 nm
 - 1241 nm
 - ...

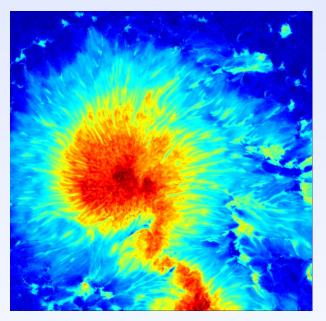
-> Driver of Earth's climate

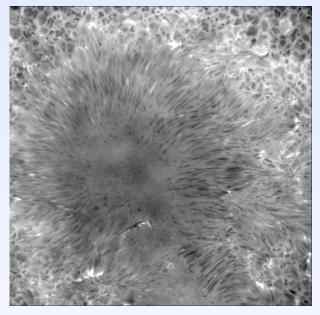


Data Recording – Lucky Imaging

Testing with data from Kanzelhöhe (ROB, Uni Graz)

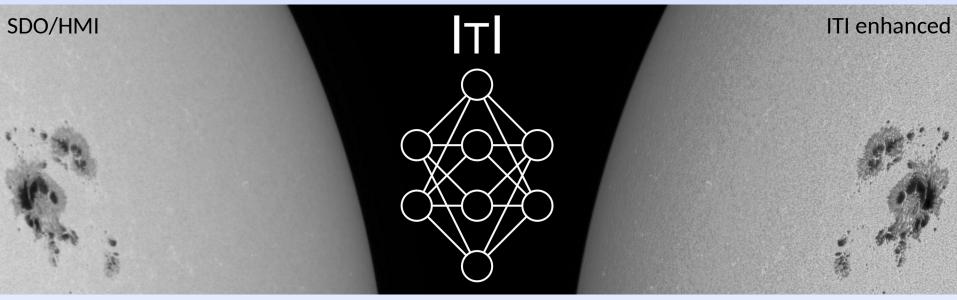
Raw sequence


After lucky-imaging


Ha KSO July 30, 2019 06:59:25 (stacked and post-processed)

Stokes Inversions (IAA)

- Code development for real-time analysis of SPRING observations completed
- P-MILOS: very fast Stokes inversion code developed and validated
- Code publicly available (with proper funding acknowledgment) at https://github.com/IAA-InvCodes/P-MILOS


Magnetic Field

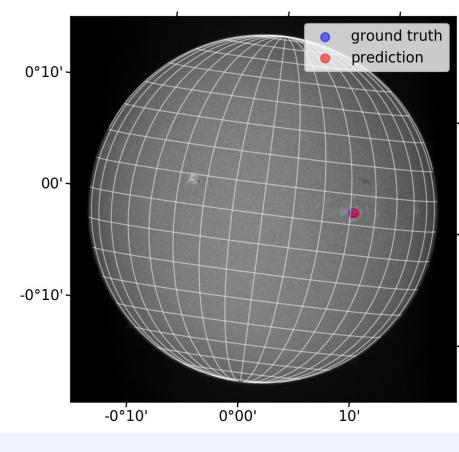
Line-of-sight velocity

Data Homogenization (Uni Graz)

Instrument-to-Instrument translation:

Solar image enhancement and data set homogenization with deep learning

- Informed image enhancement
 - Use most recent observations as reference
- General framework based on deep learning
 - Image enhancement
 - Data set homogenization



Flare Detection (Uni Graz, SKOLTECH, Obs Catania)

2018-06-20 12:02:03

- Automatic detection of solar flares
- Ongoing work:
 1. Neural network to improve existing flare detection algorithm
 2. Combination of various indicators
- Currently working on single-site data
 Next step: multi-site data set

Summary

• Several science questions in solar physics including helioseismology require **new instrumentation**

• Suggested concept for SPRING = ngGONG

- Platform carrying several new instruments
- Large telescope (>0.5m) for magnetic field measurements
- Smaller telescope (~0.2m) for Doppler velocities
- Coronagraph for linking lower and higher atmospheric layers

Instruments

- Development of technical design on the way
- Completion by 2022

• Next steps:

- Completion of preliminary design (2022)
- Work on prototype instruments and detectors (2022-25)
- Detailed site analysis (2023/2024)
- Completion of design (2025-2027)
- Construction of network (by 2028)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824135.