
 

Pricing GIC Option 

 

The GIC price is the sum of the price of closed GIC and the price of a put option with time-varying strike.  

We assume that the GIC holder receives deterministic payments at the specified payment dates 

and observe how the redemption option price changes due to changes in the number of the HW tree 

time slices. 

 

We note that the option price depends critically on the HW volatility level. We develop a technique to 

calibrate the HW volatility for GIC pricing. The idea is to associate a European swaption specification to 

the particular GIC specification. The HW volatility can then be determined by matching the HW model 

price for the swaption to the swaption's market price. We note that this technique may be highly 

sensitive to the selection of the associated swaption; moreover, this selection must reflect the hedging 

strategy for the GIC embedded option. 

 

Consider a GIC specified by 

• maturity, T , 

• set of future payment times,  N

iit 1=
, where Ttt N = ...1 . 

 

Let 

• Cstc  be the annualized customer coupon rate, 

• Trc  be the transfer coupon rate, 

• fc be the coupon rate compounding frequency, 

• fp be the coupon payment frequency (see table1), 

 



We define an "equivalent simple annualized rate", which we denote EAR: 
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The payment iP  at time ti is then 

   )( 1−−= iiTri ttEARprincipalP ,    (2) 

 

where the accrual period, 1−− ii tt ,  is calculated using the ACT/365 day counting convention. We 

have previously reviewed the generation of the payment dates, ti, and the respective payments, 

iP , 

 

Let ( )tdTr  denote the price at valuation time of a zero coupon bond, based on the cost of funds 

rates, with maturity t  and unit face value.  The closed GIC transfer price, Trpv ,  is given by 

 +=
i

NTriiTrTr principaltdPtdpv )()( ,   (3) 

 

where the summation is over the remaining payment dates. To be specific, we first bootstrap a 

set of Cost of Funds (COF) discount factors )( jTrd   at the set of fixed times,  M
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where 11 ... TM =  . The discount factor )(Trd , for 1+ jj  , where j  and 1+j are 

consecutive bootsrapping breakpoints,  is given by the log-linear interpolation: 

   ( ) )(exp)( rdTr −= , 

 

where 
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To compute the GIC value from the customer's perspective, cstpv ,  we apply eq. (3) to customer 

discount factors. The customer discount factor bootstrapping algorithm is analogous to the COF 

discount factors bootstrapping 

 

Assume that the GIC specified above can be redeemed at time t with the call rate callr . We define 

an equivalent annualized simple call rate by 
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Let ti, where ti   t, be the coupon payment date that is immediately prior to time t. The time t 

redemption value is then 

( ) ( )( ) 01)( ttEAREAREARttprincipaltR callCstCstiCst −−−−+=   (5) 

 

where t0 is the GIC inception time. Note that the term 

  ( )( )0ttEAREAR callCst −−       (6) 

 

in eq. (5) represents the penalty interest. For the customer, the intrinsic value of  the embedded 

put (redemption) option is then 

  ( )0),()(max)(int, tpvtRtp CstCstCst −= ,    (7) 

 

where the closed GIC customer price Cstpv  is calculated as described in Section 3.1. 

 

Let t1  be an indicator process such that  
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Furthermore, let   be the unique stopping time such that  
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where  

• the expectation is taken under the risk-neutral probability measure, and 

• Cstr  denotes the customer short rate.  

 

The put option's holding value is then 
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The put option value at time t is 

  ( ))(),(max)( ,int, tptptp hldCstCstCst = ,     (9) 

 

where the choice of intrinsic value indicates customer's exercise at the current time. 

 

Next, we define the following indicator process: 
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The intrinsic value of the redemption option is  

( ))()()(, tpvtRItp TrTrtintTr −=     (10) 

 

where  



   ( ) TriTr EARttprincipaltR −+= 1)(    (11)  

 

We note that payoff function (10) is typically discontinuous. 

 

The redemption option cost is then 
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where  

• Trr  denotes the short rate, and 

•   is the unique stopping time defined by eq. (7a) 

 

We assume that the customer's short interest rates process  satisfies a risk-neutral SDE of  the 

Hull-White (HW) form, 

( ) dWdtartdr cstcstcst  +−= )( ,    (13) 

where 

• a is a constant mean reversion rate, 

•    is a constant volatility. 

 

We assume that short interest rate,  Trr , satisfies a similar risk-neutral SDE, 

  ( ) dWdtartdr TrTrTr  +−= )( ,    (13.a) 



 

where the a and   parameters and standard Brownian motion W are the same as in  

eq. (13). The drift term, )(t , for each rate is calibrated to the respective initial interest rate term 

structure, which is bootsrapped  as described in ref.  [1]. For this purpose the algorithm requires 

as inputs 

• HW short rate volatility and mean reversion parameter, 

• basis yield curve key rates, 

• key rate spreads (ref https://finpricing.com/lib/IrBasisCurve.html), 

• customer key rate spreads. 

 

We note that equations (13) and (13a) imply that the two short interest rates are perfectly 

correlated.  

 

We employ the implementation output for customer and Treasury strike levels, given by eq. (5) and (10), 

respectively. Observe that if the customer and Treasury coupons are set equal, then the two respective 

strikes obey the following parity relationship: 

 ( )( )0)()( ttEAREARtRtR callCstCstTr −−+= .     (14) 

 

We value a Bermudan style put option into-the-tail with a constant strike of $100. The customer payoff 

from the option upon its exercise is  

  ( )+− flowscashremainingofPVstrike  

 

The Hull-White mean reversion parameter is set to 0.04. Both the benchmark and the Treasury 

application use 2000 tree time slices. 

 

https://finpricing.com/lib/IrBasisCurve.html

