
 

Cancelable Swap Model 

 

A pricing model is presented for pricing cancelable fixed-for-floating interest rate swap.  Here, 

party A makes regular payments that depend on the average level of a Libor rate over a set of 

Asian observation points, while party B makes upfront fixed rate payments.   

 

We first describe the general form of the cancelable swap.  Let N  denote the swap notional, T  

be the swap maturity, and iT , for ni ,...,1= , denote a reset time; here TTTT n == ...0 10 .  

Furthermore let i

jT , for inj ,...,1=  and 1,...,0 −= ni , be points such that 
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where ),( +P  is the price at time   of a zero-coupon bond with unit face value and maturity 

+ , be the − period Libor rate at time  .  Also, let  
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for 1,...,0 −= ni , be the arithmetic average of Libor rates over the set of points,   jn

j

i

jT
1=
. 

Party A must pay at iT , for ni ,...,1= , 
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where c  is a cap level and 1−−= iii TT .  In addition, let R  be an annualized fixed rate.  Party B 

must pay to Party A, 

 

1+ iNR ,        (2.1b) 

 

at 1−iT , for mi ,...,1= , where nm  .   

 

To summarize, for mi ,...,1= , the other party must pay the amount (2.1a), at iT , while Party B 

must pay, at 1−iT , the amount (2.1b).  Additionally, for nmi ,...,1+= , Party A must pay the 

amount (2.1a), at iT , while Party B does not make any payment.  Moreover, Party B may elect to 

cancel the swap, at iT , for 1,...,0 −= ni . 

 

The valuation model is a “disconnected” tree discretization of a two-factor, risk-neutral Black-

Karazinski (BK) short-interest rate process; in particular, the SDEs governing the short-interest 

rate process admit respective deterministic mean reversion and volatility parameters.  The 

disconnected tree discretization above is non-recombinant by design, but employs an 

interpolation scheme to approximate short-interest rate values at tree nodes along a time slice.   

 

Calibration of the model parameters is accomplished by matching, in a least squares sense, the 

model price against the market price for each respective European style payer swaption or caplet 

in a cache of calibration securities.   

 



For the particular live deal above, the Libor average level, i

avgL  )1,...,0( −= ni , is approximated 

by the − period Libor rate that fixes at the accrual period midpoint, 
2

1++ ii TT
.  We examine the 

impact of this approximation, on the price calculation, in our testing. 

We consider two benchmark models, that is, a single-factor short-interest rate model of the Hull-

White (HW) form and a single-factor short-interest rate model of the BK form.  We assume that 

the HW and BK short-interest rate processes satisfy respective risk-neutral SDEs of the form, 

 

( ) tttttt dWdtradr  +−= ,          (4.1.1a) 

 

And 

 

     ( ) tttttt dWdtrard  +−= loglog ,          (4.1.1b) 

 

Where 

 

• tr  denotes the short-interest rate, 

• ta  is a piecewise constant mean reversion rate, 

• t  is a piecewise constant volatility function, 

• t  is chosen to fit the initial term structure of discount factors, and 

• tW  is a standard Brownian motion. 

 

We construct a trinomial tree to approximate the short-interest rate process, Ttrt 0 , based 

on the algorithm described in [Canale, 1996].  Let  
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where Ttt p == ...0 0 , be a partition of the interval, ],0[ T , from valuation to the last payment 

time.  We assume that the respective volatility and mean reversion functions, t  and ta , are 



constant over each interval, ),[ 1 ii tt − , for pi ,...,1= .  Moreover, we ensure that the set of time 

slices, , includes the following events, 

 

• the reset point, iT , for ,,...,1 ni =  and 

• the respective sets of volatility time and mean reversion time break points. 

 

One party makes regular payments that depend on the average level of a − period Libor rate 

over a set of Asian observation points.  We note that, for a trinomial tree discretization of a BK 

short-interest rate process, the computation of a Libor rate may be numerically unstable, if the 

tree is bushy.  However, a HW trinomial tree construction does not suffer from numerical 

instability in computing a Libor rate.  We therefore considered both HW and BK respective 

benchmark short-interest rate tree constructions.   

 

Observe that the price of a cancelable swap price is given by that of the underlying swap plus 

that of a Bermudan swaption that reverses the payment flows.  We employed the HW tree 

benchmark to examine the potential error in pricing the swap component, due to the 

approximation of the Libor rate average value by that of a Libor rate level at a single point.   

 

Next, to avoid pricing mismatches due to distributional differences between the HW and BK 

short-interest rate respective model assumptions, we employed the BK benchmark, but replaced 

the Libor rate average value by that of a Libor rate level at a single point.   

 

In particular, recall that the AX2 model pricing of the cancelable swap approximates the Libor 

rate average level, i

avgL   )1,...,0( −= ni , by the − period Libor rate value at the midpoint, 

2

1++ ii TT
, of the accrual period,  )1, +ii TT ; for our BK based benchmark, we instead approximate 

the Libor rate average level by the − period Libor rate value at the start, iT ,  of the accrual 

period.   

 



The benchmark placement of the approximating Libor reset point, at the start of the accrual 

period, avoids having to compute a Libor rate directly under BK short-interest rate dynamics. 

 

Let iswap , for 1,...,0 −= ni , denote the value from Party B’s perspective, at iT , of the remaining 

swap payments over the accrual periods,  )
1, +jj TT , where 1,..., −= nij .  In particular, 
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     (4.1.2) 

 

where ( )E  denotes expectation under the risk-neutral probability measure.  Furthermore, let 

 

( )0,max ii swapEuro −=  

 

denote the value, at iT , of a European swaption to receive fixed-rate payments in exchange for 

floating-rate payments.  Also, let  
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where   is a stopping time, be the value at 0T  of a Bermudan swaption to receive fixed-rate 

payments in exchange for floating-rate payments.  The value at 0T  of the cancelable swap, 

0cancel , is then given by 

 

000 Bermswapcancel += .     (4.1.4) 

 

Since the average Libor rate level, i

avgL  )1,...,0( −= ni , is an interest rate path dependent 

quantity, we employ crude Monte Carlo simulation to identify short-interest rate paths along our 



trinomial tree; an estimate of the swap price, 0swap , is then given by the arithmetic average of 

the swap value with respect to each Monte Carlo path.  The Monte Carlo estimate of 0swap  will 

converge to the corresponding trinomial tree based value as the number of Monte Carlo paths 

tends to infinity. 

 

We consider a portfolio of l  European style caplets.  In particular, the thi  ( li ,...,1= ) caplet is 

specified as follows, 

 

• Libor fixing time, i , with corresponding accrual period, i  , 

• payoff at i  equal to ( ) ( )( )0 ,,11max iiii PX  ++−  where X  is a strike level. 

 

For each option in the portfolio above, we obtain from WM a corresponding Black’s implied  

volatility.  We then price the payer swaption above based on Black’s analytical formula.  Let iP  

denote the price for the  thi  ( li ,...,1= ) caplet calculated using Black’s model as described above.   

 

We assume that the volatility function in (4.1.1a and b), t , is constant over the respective 

periods, ),0[ 1 , ),[),...,,[ 121 Tl− .  In particular, let l ,...,1  be the constant volatility value that 

corresponds to the respective intervals, ),0[ 1 , ),[),...,,[ 121 Tl− .  Furthermore let );( ibench 


, 

for li ,...,1= , denote the benchmark option price for the thi  caplet where  Tl ,...,1=


.  We 

seek to solve 
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in a least squares sense, for the unknown, 


; that is, we seek to minimize 
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.  A necessary condition for a minimum is that 
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We solve (4.2.1) for the unknown, 


, using Newton’s method based on our short-interest rate 

trinomial tree. 
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