
 

BGM Monte Carlo Simulation 

 

Brace-Gatarek-Musiela (BGM) model, also called LIBOR Market Model, is a multi-factor log-

normal model for pricing interest rate derivatives. The model is usually solved by Monte Carlo 

simulation. 

 

The generated simulation must satisfy certain requirements. These properties fall into two 

categories. First, there are no arbitrage conditions, which are to be satisfied exactly. Second, 

there is a requirement to reproduce input calibration data as accurately as possible with selected 

types of analytical parameterizations of model parameters. 

 

The set of exactly satisfied requirements is 
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The requirement that is satisfied exactly in the limit of large number of the Monte Carlo paths, is 

 

▪ Logarithm of the simple rate between any two consecutive forward dates in both currencies is 

normally distributed 

 

Requirements of the second type are that certain averages computed using generated simulation 

match as close as possible specified input values. These are used to define root mean square error 

(RMSE) functions to be minimized during different calibration steps. These RMSE functions are 

computed as 

 

RMSE 2  = (1/nConditions) 
conditions

 Importance (condition) (modelValue (modelParameters)  – 

inputValue) 2   

 

The specific set of conditions to sum over depends on particular calibration step, like volatility 

triangle calibration, HJM factors calibration, FX correlations calibration (to be discussed in 

details later). First, I describe the model Values and input values which can be used in building 

RMSE functions. I will give the precise formulas used below (when each calibration function is 

implemented) 

 

Diffusion is performed over a period  max,0 t . This period is divided into time steps 

max100 tttt N ==  . The dates it  are called Diffusion Dates. They may or may not be 

regularly spaced. The interval between two consecutive diffusion dates  1, +ii tt  is called a 

Diffusion Step. 



 

The model is aimed to calibrate its parameters on the market price of a list of at-the-money FX 

options, with increasing maturities max1 tm    , which we call Calibration Dates. An 

interval  1, +ii   is a Calibration Interval or a Slice. 

 

Diffusion dates are set in such a way that all calibration dates are diffusion dates. Then the 

diffusion step is specified on each slice. Diffusion dates are business days, approximately spaced 

by the diffusion step (except the last step that can be shorter). We define the indices mii ,,1   by 

mjt ji j
,,1, == . 

 

Calibration dates and diffusion dates are dates at which the FX and interest rate values are 

observed. Corresponding Spot Dates are denoted it   and i  . 

 

Generally speaking, all diffusions will be considered between diffusion dates, whereas 

discounting will be performed between spot dates. 

 

Forward Libor rates are settled at fixed dates pTT ,,1  , called Future Dates, which do not 

depend on the diffusion dates kt  and are regularly spaced by the BGM tenor d  (usually 3 

months): dTT ii +=+1  (up to non business days). 

 

For a given diffusion date kt  and corresponding spot date kt   there is a unique index ki  such that: 

 

kk iki TtT −1  



 

The interval  
kikt ,  is called the Stub Interval and the rate that applies on this period is the Stub 

Rate. 

 

At each diffusion date kt , the Spot Libor Rate applies on the interval  dtt kk + ,  (or, to be more 

precise, until the first business day greater than or equal to dtk + ). Spot Libor rate is not used in 

the diffusion procedure of discount factor of other maturities. It is only displayed to price exotic 

options with a barrier on the Libor, or similar structures. 

 

It is important to notice that these dates should be absolutely the same in both currencies. In 

particular, the spot dates are computed in the same way as those of an FX option. 

At a given diffusion date kt , the curve structure is constituted of several rates (ref. 

https://finpricing.com/lib/IrCurveIntroduction.html): 

 

• Short rate kr  on  1, +

kk tt   

• Stub rate ks  on  1, +


kik Tt  

• Spot Libor kL  on  dtt kk + ,  

• Future Libor kiF  on   kii iiTT + ,, 1  

 

Discount factors are computed as follows: 
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The numeraire is the product of short discount factors: 
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It is known at date 1−kt  (and is deterministic if 1=k ). 

 

This rate structure is duplicated at each diffusion date: one structure for the domestic currency 

and the other for the foreign one, specified by superscripts d  and f . 

 

When computed at a diffusion date other than 0t , these rates and discount factors are random 

variables that are materialized as Monte-Carlo arrays. Each index corresponds to a path and 

expectations will be replaced by averages over all paths. 

At each diffusion date, only a certain number of discount factors are provided. For the purpose of 

rate diffusion, one may need other discount factors. An interpolation procedure is thus necessary. 

Currently, we have implemented a linear interpolation of the logarithm of encompassing 

available maturities. Assume for instance that these maturities are in the following order: 

 



+ +++ 211 kkk iikikk TTdtTtt  

 

(the position of 1+

kt  depends on the diffusion step and on the stub period). Then, for any maturity 

date ktT  , we check encompassing maturities, say 1+ ii TTT , and we set: 
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This interpolation, which is very commonly used, means that forward spot rates are piecewise 

constant. It is similar to, but not quite the same as making a linear interpolation of the yields to 

maturity. It has been chosen because accuracy is the same and formulas are simpler. 

 

Note that 1),( =
kk ttDF  and ),( TtDF k

  is not available if ktT  . 

 

Forward discount factors are simply ratios of spot ones: 
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In the sequel, forward rates (Libor and CMS rates) are computed with this interpolation 

technique. 

 



The curve diffusion procedure computes the rates at date 1+kt  with respect to kt . First, one 

computes the forward Libor rate starting at 1+

kt  from the DF  function: 
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Then the BGM diffusion equation is discretized to get the spot Libor rate 1+kL  from its forward 

value ),;( 11 dtttF kkk +
++  and the future rates ikF 1+  from 1, + kki iiF . Let: 

 

kk ttt −= +1  

 

and 41 ,, dWdW   be independent Gaussian random variables with standard deviation t  (in 

practice, arrays of real numbers indexed by the Monte-Carlo path index). We first write: 
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The drift is here stated to make 1+kL  and other future rates have their forward value as 

expectation. This is slightly wrong because of an Ito term, due to a discrepancy between the risk-

neutral probability and the forward neutral one, but the error is smaller than the Monte-Carlo 



error and will anyway be adjusted as explained in sect. II.9 to make actualized expectation of 

discount factors and numeraires match exactly the initial discount factors. 

 

The volatility triangle is an array that reflects the function ),( Tt . However, it is provided by 

the HJM sheet, with a different mesh than our original mesh ( )
ikik Tt
,

, . Therefore, ),( ik Tt  is 

interpolated from values in the volatility triangle, and so is ),( Ttk  when T  itself is interpolated. 

 

The volatility ),( Ttk  applies on the period  1, +kk tt  to a rate that corresponds to a loan on the 

period  dTT +, , with 1+
 ktT  (the spot date corresponding to 1+kt ). The date T  can be either 

one of the future dates iT  and then 1+=+ iTdT  or it can be any interpolated date. Let ( )
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be the HJM mesh (typically both ht
~

 and 
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 are 3 months spaced and ii tT = ). We assume that for 

a given date t , ),( Tt  is linearly interpolated between encompassing maturities  1
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,
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that, as a function of t , it is constant on intervals  1
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volatility 
2),( Tt  is linearly interpolated with respect to t . 
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Then ),( Ttk  is given by the formula: 
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In the situation where 2

~
+ htT , then the second linear interpolation has to be modified, because 

)
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,
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( 1 ih Tt +  does not exist. We set in this case: 
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If 1+= ktT , this may be considered as a linear interpolation of the s-volatility. 

 


