
 

Pricing FX Option via BGM 

 

The interest rate diffusion refers to the Brace-Gatarek-Musiela (BGM) model that is a multi-

factor log-normal model. The model is used for pricing interest rate and FX derivatives. The 

method directly models the movement of the whole yield curve through the dynamics of 

correlated spanning forward LIBOR rates. This feature gives the BGM model much more 

flexibilities to model the correlation among the rates on the whole yield curve. 

 

The straightforward approach to compute a European vanilla call or put of maturity kt  and strike 

K  on the exchange rate )( ktX  is to average over all paths the discounted pay-off of the option, 

i.e., for a call: 
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and a similar formula for a put. If the maturity falls in between two consecutive diffusion dates, 

then a partial diffusion from the last diffusion date before maturity to the exact maturity date is 

performed. 

 

In order to increase accuracy, we observe that, on the last step, the volatility and the interest rates 

do not vary anymore. Hence, the option can be computed by Black-Scholes formula. This will 

smooth the pay-off and fasten the convergence. For intermediate maturities, this technique also 

avoids partial diffusion. The price of a call is given by: 
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where BS  is the Black-Scholes formula and the rates are: 
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In the case where the maturity T  of the option falls before kt , then we replace t  by 1−− ktT  and 

kt   by the spot date T   corresponding to the observation date T . 

 

For knock-out options, the sum is only performed on those trajectories that do not hit the 

barrier(s), although we still divide it by the total number N . However, especially when 

computing sensitivities, a discontinuity may occur if a path reaches a point very close to the 

barrier without crossing it, and finishes in the money. 

 

To avoid such problems, trajectories are weighted according to their survival probability. One 

can imagine each trajectory as representing a whole beam of paths, of which we only know their 

values at the observation dates, but that can “wander” in between these dates. Thus, some of 

them may be killed because they hit the barrier between observation dates. By a “Brownian 

bridge” technique, the proportion of those who hit the barrier for each trajectory and in each 

interval  1, +kk tt  is computed, and, in the end, the trajectory is weighted with the proportion of 

paths that survived all the way through. If, at one of the observation dates, the barrier is crossed, 

then the weight is automatically set to 0. 



 

As for vanilla options, a closed form is used in the last step. Not only this smoothes the pay-off, 

but also, the singularity occurring in reverse barrier options is taken into account with accuracy. 

 

We mention that the risk-neutral expectation of a domestic numeraire equals the original 

discount factor and that, by the Bayesian rule: 
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In practice, the average of Monte-Carlo samples may slightly differ from its theoretical value, 

and this small difference with respect to the notional amount may become relatively big with 

respect to an option price. Moreover the drift of Libor and Future rates has been approximated by 

neglecting an Ito term. It is therefore important to “adjust” the average. The most straightforward 

way is to multiply the sample discount factors by the ratio between the initial discount factor and 

the actual average. This is equivalent to a rate shift. A more accurate way, but more time 

consuming, in the BGM model is to multiply the rates by a coefficient in order to meet the 

theoretical expectation. For reasonable values of the rate volatility, the rate shift is widely 

sufficiently accurate and the second technique is not necessary (it may be used if the volatility 

exceeds 60%). 

 

Assume that )( k

d tNum   has the correct average. Adjusting the short discount factor ),( 1+

kk ttDF  

ensures the expectation of )( 1+

k

d tNum . Then we successively adjust the spot Libor, the stub and 

the series of Futures. 

 

The FX rate )( ktX  is now adjusted with respect to initial foreign discount factors: 
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This will in particular ensure the put/call parity of vanilla FX options of maturity kt  that are 

computed in the “non smooth” way. 

 

To ensure the put/call parity of options of maturity 1+kt  computed in the “smooth” way, one has 

to adjust, on top of this, the drift of the foreign short rate by ensuring that: 
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Again, once these two adjustments have been achieved, one corrects the drift of other foreign 

rates (spot Libor, stub and Futures) in order to meet the equalities: 
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Calibration is a procedure that finds which expected spot volatility to input in order to match the 

market price of at-the-money FX vanilla options. It works as a “bootstrap”. The time interval 

 max,0 t  is divided into subintervals    mm  ,,,,0 11 −  where we recall that i  is the maturity of 

the i -th calibrating option. The level of )(t  is computed on each interval  ii  ,1− , one after the 

other, in accordance with the market price of the i  option. 



 

By assumption, calibration dates are part of the diffusion ones. We thus may define the index ik

by iki
t = . Two shapes of the term structure of the expected spot volatility are proposed. In the 

first one, referred to as “non interpolated”, )( kt  is constant on each interval and makes a jump 

at calibration dates. 

 

In the second one, referred to as “interpolated”, )( kt  is constant on the first interval  11
,0 −kt , 

then, once )( kt  has been calculated for 10 − ikk , it is linearly interpolated between 1−ik  

and 11 −+ik . It is the value of )( 11−+ikt  that is calibrated on the market price of the 1+i  option. 

This shape provides a more continuous term structure, but also more oscillatory. In particular 

problems may occur for very low volatilities, as oscillations may induce negative volatilities. 

 

A secant method (see Numerical Recipes in C) is used at each step to match the market prices 

(with some improvements to be more robust). 

 

Interest rate calibration is based on a closed form approximation of the volatility of caplets and 

swaptions. It only matches the approximation to the market volatilities, so repricing calibrating 

options with the model will not make an exact market fit. Nevertheless, most of the time the 

accuracy is of the order of 1% of the option price (the error may be bigger for very long-term 

options). Techniques are currently under study to achieve an exact market match. 

 

In their 1997 article, Brace, Gatarek and Musiela showed that a caplet of maturity T  can be 

priced with a Black-Scholes formula, using a volatility parameter given by: 
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where ),( Ts  is the volatility of the Libor future ),;( dTTtF +  at date t . In fact, they prove that 

in the “forward-neutral” measure at date dT + , ),;( dTTtF +  has a log-normal distribution and 

that its logarithm has variance 
T

t
dsTs 2),( . In other forward-neutral probabilities, the variance 

is approximately equal, but not quite. 

 

Similarly, the covariance of the logarithm of two different Libor futures ),;( dTTtF +  and 

),;( dTTtF +  is approximately equal to: 
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where ),,( TTs   is the instantaneous correlation at date s  between the two futures (here there is 

no possible exact formula, because futures have different maturities). 

 

In practice, the volatility of a caplet, the maturity of which is one of the sample dates 
iT

~
 of the 

volatility triangle, can be calculated by adding the squares of the values over a line of the triangle: 
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For swaptions, one first approximates the CMS rate by a combination of Libor futures, with 

coefficients evaluated according to the initial yield curve (ref. 

https://finpricing.com/lib/IrBasisCurve.html). Then the variance of this combination at the option 

maturity is calculated using the covariances of Libor futures, which we approximate as explained 

above. 

 

The whole volatility triangle is now parameterized by a double summation of Chebyshev 

polynomials (other parameterizations are also available): 
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where i  is the Chebyshev polynomial of degree i , defined by: 
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Coefficients ija  are found to minimize a least square criterion on the volatilities of calibrating 

options. The minimization algorithm is Levenberg-Marquardt. 

 

https://finpricing.com/lib/IrBasisCurve.html

