
 

 

Trinomial Tree Algorithm for Barrier Option 

 

A trinomial tree can be used for pricing particular types of barrier options. We consider 

particular types of single barrier and double barrier options.  Each method for pricing a particular 

type of barrier option is based on a combination of techniques, that is, a tree generation 

technique and an appropriate backward induction pricing technique. 

 

The single barrier options include certain types of: 

 

  Down and In (D_IN) calls and puts,  

 Down and Out (D_OUT) calls and puts,  

  Up and In (UP_IN) calls and puts, and  

 Up and Out (UP_OUT) calls and puts.  

  

We specify these types next. 

 

A D_IN call option specification, for example,  includes the exercise type (i.e., either American 

or European),  an  exercise time, T ,  a strike level, X ,  a rebate value, R  (where R  0) , and a 

barrier level, H td ( ) , which depends continuously on time over  the interval [ , ]0 T .    



 

Here the underlying security is any security whose price, S t( ) ,  can be modeled as a piecewise 

geometric Brownian motion over the life of the option.  In addition we require that the initial 

spot level for the underlying security, S( )0 , lie above the initial barrier level, Hd ( )0 .   

 

The payoff for a long, European D_IN call is that of a standard European call, provided that  the 

underlying  falls below the barrier level at some time during the option’s life (i.e.,  S t H t( ) ( ) , 

for some t T[ , ]0 ); otherwise, the payoff at expiry  is equal to the fixed rebate, R .  Formally a 

long, European D_IN call option payoff is defined, at exercise time T , as 

 

max( ( ) , ), ( ) ( ), [ , ],
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In contrast a  long, American D_IN call can be exercised immediately after it has knocked in (i.e., 

after the underlying security has crossed the lower barrier level); if the option does not knock in, 

then the fixed rebate, R , is received at maturity.   

 

As mentioned above, we also consider certain types of double barrier options.  These options 

include particular types of:  

 

  Down  and Out or Up and Out (D_OUT_OR_UP_OUT) calls and puts, 

   Down and In and Up and Out (D_IN_AND_UP_OUT) calls and puts,  

  Down and Out and Up and In (D_OUT_AND_UP_IN) calls and puts,  

 Down and In or Up and In (D_IN_OR_UP_IN) calls and puts, 



  Down and Out and Up and Out (D_OUT_AND_UP_OUT) calls and puts, and 

 Down and In and Up and In (D_IN_AND_UP_IN) calls and puts.  

 

The double barrier options above allow only for European exercise.   Below we provide 

specifications for certain of these options.  

 

A  D_OUT_OR_UP_OUT European call option specification, for instance, includes an exercise 

time, a strike level, and a rebate value (we denote these parameters as above).   In addition two  

barrier levels, H t H tu d( ) ( ) and , which depend continuously on time over the interval [ ]0,T , 

must be specified (here H tu ( )   H td ( ) , for all t T[ , ]0 ).  Note that the initial price of the 

underlying security, S( )0 , must lie between the initial upper and lower barrier values, Hu ( )0  

and Hd ( )0 .   

 

The payoff from a long  European D_OUT_OR_UP_OUT call option is equal to that of a long, 

standard European call option, if the price of the underlying security does not cross either the 

upper or lower barrier during the time interval [ , ]0 T  (i.e., if H t S t H td u( ) ( ) ( )  , for all 

t T[ , ]0 ); otherwise, as soon as one of these barriers is touched, a rebate value of R  is received.  

Note that, of the double barrier options above, the D_OUT_OR_UP_OUT option is the only 

option that allows for a rebate.  Specifications for the remaining double barrier options above are 

provided in [Myint, 1996a] 

 

We also consider two types of knockout annuities, Down and Out  and Up and Out.   If we are 

long such a knockout annuity, we receive a fixed coupon annuity until the price of the underlying 

security crosses a preset barrier level; we then receive the accrued annuity since the last pay date.  

Note that only European exercise is permitted for the knockout annuities above, and no rebates 

are allowed. 



 

Analytic formulas for pricing barrier options do not exist for the case where the barrier is an 

arbitrary, continuous  function of time or where the exercise type is American.  Tree methods 

(e.g., trinomial or binomial) can, however, be used to approximate the price of barrier options.   

Unfortunately standard tree methods, when applied to price barrier options, suffer from several 

drawbacks, that is, these methods may converge very slowly and/or display a persistent bias in 

the price. The disadvantages above are due to the inability of standard tree methods to ensure, for 

example, for a single barrier option, that a layer of tree nodes always coincides with the barrier.   

 

In such a case, then, the tree method effectively prices a different option (i.e., with a new barrier).  

An interesting, new trinomial tree method is presented for overcoming the above specification 

error in the barrier.  The idea of the method is to construct a tree lattice, for example, for a single 

barrier option, by ensuring that certain nodes near the barrier always branch onto the barrier. 

 

Next we present the methods for pricing the types of barrier options described in Section 2.  Each 

method is based on a combination of techniques, that is, a tree generation technique and a 

backward induction pricing technique.  Below we describe the tree generation techniques for 

both single barrier and double barrier.  We then describe backward induction techniques for the 

types of options considered. 

 

Let 0 0=   =t t TN  be a partition of the time interval [ , ]0 T .  Furthermore suppose that the 

underlying security follows piecewise geometric Brownian motion, in the sense described below,  

over the interval [ , ]0 T .   Specifically, assume that the underlying security can be modeled as a 

process,  S t t T( )| [ , ] 0 , which, under the risk neutral probability measure, satisfies a stochastic 

differential equation (SDE) of the form 

 



                 dS t t S t dt t S t dW t t T( ) ( ) ( ) ( ) ( ) ( ), [ , ],= +      0                              (1) 

 

where  W t t T( )| [ , ] 0 is standard Brownian motion.  Here ( )t  and  ( )t  are deterministic 

functions of the piecewise constant form 
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Each method includes a technique for constructing, based on the SDE (1), an appropriate tree of 

discrete prices of the underlying security.   Each such technique uses a mathematical result, 

described below, for ensuring that branching probabilities from each tree node are appropriate 

(i.e., probabilities, for each node, must be non-negative and sum to one). 

 

Consider a tree node,  , at a  time slice, t i ,  where  0 i N ;  furthermore, assume that the 

logarithm of the price of the underlying security at this node is equal to log Sold .  We assume 

that node   branches into three nodes, at time slice t i+1 , with respective logarithm of the price 

of the underlying security of the form ( ) log , +1  Snew  ( ) log ,  Snew  and 

( ) log −1  Snew  where   and  log Snew  0 .    

 

Here ( ) log  Snew  is the value that, among all tree nodes at time t i+1 , is  closest to 

log Sold ti i+ + + 1 1  where  
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 and t t ti i i+ += −1 1 ;  furthermore, 

( ) log +1  Snew  and  ( ) log −1  Snew  are values for the two  nodes closest to the node with 



value  ( ) log  Snew .  Next  we associate with node   a discrete random variable, Y , which 

takes the values 
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We seek to determine p p pu m d,  and , above, so that the mean and variance of the discrete 

random variable Y  match those of the continuous random variable 

log Sold t Wi i i ti

+ ++ + +
+

 1 1 1
1

   (obtained by solving the SDE (1), with initial condition 

log ( ) logS t Soldi = , for the time interval [ , ]t ti i+1 ).   

 

By matching mean and variances as described above, and by ensuring that the probabilities sum 

to one, we obtain the following system of linear equations 

 

p Snew p Snew p Snew Sold

t

p Snew p Snew

p Snew t Sold t

p p p

u m d

i i

u m

d i i i i

u m d

( ) log ( log ) ( ) log log

 ,

( ) ( log ) ( ) ( log )

( ) ( log ) (log  ) ,

  



 

  

+ + + − =

+

+ + +

− = +

+ +

+ +

+ + + +

1 1

1

1

1 1
2 2 2 2

2 2

1

2

1 1 1

2

  



 

  

                                                                                                           

 

                             +  

=

















1,                                                                                                    

      (2) 

 

for the unknowns p p pu d m,  and .  By algebraic manipulation, the linear system of equations 

above is equivalent to   
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Where 
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Notice that while the system of equations above has a unique solution, we have no guarantee that 

p p pu m d,  and  will be non-negative.   Next we determine a condition on A to ensure that 

p p pu m d, .,  0  

 

Recall that the branching rule from node   implies that  
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Dividing (5)  by  log Snew and substituting  B  for the right hand side of (4b), we have

 +   −
1

2

1

2
B , which we can rewrite as  
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for some x [ , ]0 1 .  Solving (3) and substituting the right hand side of (4b) for B , we obtain 
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where x [ , ]0 1 .  Notice that the right hand side of (7) has no dependency on  .   

 

Analyzing the right hand side of (7) over the range x [ , ]0 1 , we obtain the condition  
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on A , which ensures that  p p pu m d, .,  0   Notice that (8) yields an equivalent condition on 

 log Snew , that is, 
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To summarize, for an arbitrary tree node on an arbitrary time slice, appropriate branching 

probabilities are given as the solution of (2) provided that condition (9)  holds.   

 

Suppose that we have constructed a tree up to slice  t i , where 0 i N .  Let log maxSold  and  

log minSold  denote, respectively, the maximum and minimum values for the logarithm of the 

price of the underlying security among all tree nodes at time t i .  Then we cross the upper 

barrier, at time t i+1
, if   

 

                        log  ( . ) log ( )maxSold t Snew H ti i u i+ + + + + 1 1 115  ;  

 

similarly we cross the lower barrier, at time  t i+1
, if  

 

                          log  ( . ) log ( )maxSold t Snew H ti i d i+ − + + + 1 1 115  . 

 



Here  log maxSnew  is defined in Section 3.1.2.1.  If, at time step t i , we determine that no 

barrier will be crossed in the next time step, then we define, at time t i+1 , an artificial barrier 

equal to 

 

                                   ( )
1

2
1 1log log  .max minSold Sold ti i+ + + +   

 

 

Reference: 

https://finpricing.com/lib/IrBasisCurve.html 

https://finpricing.com/lib/IrBasisCurve.html

