

Trinomial Tree Construction

A trinomial tree based method is presented for pricing exotic options. The model is based on a

combination of techniques. that is, a tree generation technique and an appropriate backward

induction pricing technique.

Since the volatility parameter in the SDE is of a piecewise constant form, the tree generation

techniques may, in some cases, construct trees that are non- recombining. In the worst case, then,

the space complexity of the tree generation techniques is proportional to the exponential of the

number of time slices in the tree.

Let 0 0=   =t t TN be a partition of the time interval [,]0 T . Furthermore suppose that the

underlying security follows piecewise geometric Brownian motion, in the sense described below,

over the interval [,]0 T . Specifically, assume that the underlying security can be modeled as a

process,  S t t T()| [,] 0 , which, under the risk neutral probability measure, satisfies a stochastic

differential equation (SDE) of the form

 dS t t S t dt t S t dW t t T() () () () () (), [,],= +   0 (1)

where  W t t T()| [,] 0 is standard Brownian motion. Here ()t and  ()t are deterministic

functions of the piecewise constant form







()

, [,),

, [

t

 t t

t t tN N N

=













−

1 1

1

0

 ,],

 and 





()

, [,),

, [

t

 t t

t t tN N N

=













−

1 1

1

0

 ,],

 .

Each method includes a technique for constructing, based on the SDE (1), an appropriate tree of

discrete prices of the underlying security. Each such technique uses a mathematical result,

described below, for ensuring that branching probabilities from each tree node are appropriate

(i.e., probabilities, for each node, must be non-negative and sum to one).

Consider a tree node,  , at a time slice, t i , where 0 i N ; furthermore, assume that the

logarithm of the price of the underlying security at this node is equal to log Sold . We assume

that node  branches into three nodes, at time slice t i+1 , with respective logarithm of the price

of the underlying security of the form () log , +1  Snew () log ,  Snew and

() log −1  Snew where   and  log Snew  0 .

Here () log  Snew is the value that, among all tree nodes at time t i+1 , is closest to

log Sold ti i+ + + 1 1 where  


i i

i

+ +

+
= −1 1

1

2

2
 and t t ti i i+ += −1 1 ; furthermore,

() log +1  Snew and () log −1  Snew are values for the two nodes closest to the node with

value () log  Snew . Next we associate with node  a discrete random variable, Y , which

takes the values

Y

Snew p

Snew p

Snew p

u

m

d

=

+

−









() log , ,

(log), ,

() log .







1

1







 with probability

 with probability

, with probability

We seek to determine p p pu m d, and , above, so that the mean and variance of the discrete

random variable Y match those of the continuous random variable

log Sold t Wi i i ti

+ ++ + +
+

 1 1 1
1

  (obtained by solving the SDE (1), with initial condition

log () logS t Soldi = , for the time interval [,]t ti i+1).

By matching mean and variances as described above, and by ensuring that the probabilities sum

to one, we obtain the following system of linear equations

p Snew p Snew p Snew Sold

t

p Snew p Snew

p Snew t Sold t

p p p

u m d

i i

u m

d i i i i

u m d

() log (log) () log log

 ,

() (log) () (log)

() (log) (log ) ,

  



 

  

+ + + − =

+

+ + +

− = +

+ +

+ +

+ + + +

1 1

1

1

1 1
2 2 2 2

2 2

1

2

1 1 1

2

  



 

  

 +

=

















1,

 (2)

for the unknowns p p pu d m, and . By algebraic manipulation, the linear system of equations

above is equivalent to

p p B

p p A B

p p p

u d

u d

u m d

− = −

+ + − = + −

+ + =











  

,

() () ,

,

1 2 1 2

1

2 2 2 (3)

Where

 A
t

Snew

i i2 1

2

1

2=
+ + 

(log)
 (4a)

 and

 B
Sold t

Snew

i i
=

+ + +log 

log

 1 1


. (4b)

Notice that while the system of equations above has a unique solution, we have no guarantee that

p p pu m d, and will be non-negative. Next we determine a condition on A to ensure that

p p pu m d, .,  0

Recall that the branching rule from node  implies that

 () log log  () log .  +  +  −+ +

1

2

1

2
1 1  Snew Sold t Snewi i (5)

Dividing (5) by  log Snew and substituting B for the right hand side of (4b), we have

 +   −
1

2

1

2
B , which we can rewrite as

 B x= − +
1

2
 (6)

for some x [,]0 1 . Solving (3) and substituting the right hand side of (4b) for B , we obtain

p
A x

p x x A

p
A x

x

u

m

d

= + −

= + − −

= + − +















2 2

2 2

2 2

2 2

1

8
3

4

2 2

3

8

,

,

,

 (7)

where x [,]0 1 . Notice that the right hand side of (7) has no dependency on  .

Analyzing the right hand side of (7) over the range x [,]0 1 , we obtain the condition

3

4

1

4
2 A (8)

on A , which ensures that p p pu m d, .,  0 Notice that (8) yields an equivalent condition on

 log Snew , that is,

2

3
2

1 1

1 1




i i

i i

t
Snew t

+ +

+ + 


 log . (9)

To summarize, for an arbitrary tree node on an arbitrary time slice, appropriate branching

probabilities are given as the solution of (2) provided that condition (9) holds. In Appendix B

we examine the sensitivity of solutions to (2) with respect to perturbations in the values of

 log Snew and  .

In this section we present the techniques for generating a tree appropriate for pricing the barrier

options described in Section 2. We consider single barrier options first.

Suppose that we have constructed a tree up to time t i , where 1 i N . To expand the tree to

the next time slice, we first define, at time t i+1 , an appropriate partition for the logarithm of the

underlying security; then, using this partition, we determine the children and associated

probabilities of all nodes at time t i .

Note that, by an appropriate partition for the logarithm of the underlying security at time t i+1 ,

we mean a partition such that the inter-node spacing is equal to  log Snew where  log Snew is

chosen (as in Section 3.1.1) so that branching probabilities are non-negative. Next we describe

how to construct such a partition. Then we discuss how to determine the branching and

corresponding probabilities for nodes at time t i .

To define a partition at time t i+1 (with uniform spacing,  log Snew , which satisfies the

inequality (9)), we first determine whether, for some nodes at time t i , there is a branch that

crosses the barrier at time t i+1 . This determination is made by checking certain conditions,

defined in Appendix A, based on the branching rule (for nodes on the old time slice to nodes on

the new time slice) defined. I

f we determine that the barrier will be crossed at time t i+1 , we generate a partition by placing a

node on the actual barrier (i.e., either H tu i()+1 or H td i()+1) and all other nodes offset from the

barrier by integer multiples of  log Snew . Otherwise, if the barrier will not be crossed, we

define an artificial barrier at time t i+1 (see Appendix A); we then generate a partition by placing

a node exactly on the artificial barrier and all other nodes offset by integer multiples of

 log Snew from this barrier (here the artificial barrier simply acts as a point of reference for

generating the partition). We use for  log Snew a value close to the upper bound, 2 1 1 i it+ + ,

in the inequality (9).

Once an appropriate partition has been defined at time t i+1 , we then determine, according to the

branching rule presented in Section 3.1.1, the children of each node at time ti . Suppose that a

particular node at time ti (with value for the logarithm of the underlying security equal to

log Sold) branches to nodes at time t i+1 with values for the logarithm of the underlying security

equal to au , am and ad , respectively, where a a au m d  . Then, from (2), appropriate

branching probabilities are determined by solving the system of linear equations

p a p a p a Sold t

p a p a p a t Sold t

p p p

u u m m d d i i

u u m m d d i i i i

u m d

+ + = +

+ + = +

+ + =









+ +

+ + + +

log  ,

(log ) ,

,



 

1 1

2 2 2

1

2

1 1 1

2

1



 

 +

for the unknowns p pu d, and pm . The numerical conditioning of the system of linear

equations above should be checked, however, to ensure the accuracy of the computed solution.

The tree construction technique for double barrier options is based on a similar approach as for

single barrier options. That is, if the tree has been constructed up to time t i , an appropriate

partition for the underlying security is defined at time t i+1 ; then branches and associated

probabilities are determined for nodes on the old time slice. We describe these techniques next.

Suppose that the tree has been generated up to time t i , where 1 i N . If neither barrier is

crossed at time t i+1 , then an artificial barrier is defined, at time t i+1 , and used (as a point of

reference) to generate an appropriate partition. Otherwise, a partition is defined that places

nodes on both barriers (see below). Once a partition is defined, branching and corresponding

probabilities are determined as above.

Next we show how to construct a uniformly spaced partition for the logarithm of the underlying

security price at a time slice, t i , so that nodes are placed on both the upper and lower barriers.

We begin by placing a node on the logarithm of the upper barrier, log ()H tu i . Then we attempt

to place a node on the logarithm of the lower barrier, log ()H td i , making sure that condition (9)

in Section 3.1.1 holds.

Let 


log minSnew
ti i

=
2

3


 and  log maxSnew ti i= 2 denote, respectively, the lower

and upper bounds in the inequality (9) (with respect to time slice t i). Also let

 log log () log ()H H t H tu i d i= − be the difference in the logarithm of the upper and lower

barrier values at time t i . Now let j
H

Snew
=










| log |

log min




 be the number of entire  log minSnew

intervals contained in | log | H . We seek

   log [log , log]min maxSnew Snew Snew

such that

 j Snew H(log) | log | = . (10)

Observe that the only way (10) can fail to hold is if j Snew H(log) | log |max  , that is,

 j
H

Snew
3 

| log |

log min




. (11)

Next notice that (11) is of the form   3  , for  R , which does not hold for any   2

(i.e., in the case there are at least three nodes between the upper and lower barriers).

To summarize, as long as
| log |

log min





H

Snew









  2 , we can find

  log [log , log]min maxSnew Snew Snew such that (10) holds (i.e., we fit both barriers). In

particular, we can proceed by computing j
H

Snew
=










| log |

log min




. We then check that j  2 ; if not,

we then decrease  log minSnew by decreasing t i . Next we take 


log
| log |

Snew
H

j
= .

Reference:

https://finpricing.com/lib/IrCurveIntroduction.html

https://finpricing.com/lib/IrCurveIntroduction.html

