
 

 

Trinomial Tree Construction 

 

A trinomial tree based method is presented for pricing exotic options. The model is based on a 

combination of techniques. that is, a tree generation technique and an appropriate backward 

induction pricing technique.    

 

Since the volatility parameter in the SDE is of a piecewise constant form, the tree generation 

techniques may, in some cases, construct trees that are non- recombining. In the worst case, then, 

the space complexity of the tree generation techniques is proportional to the exponential of the 

number of time slices in the tree.   

 

Let 0 0=   =t t TN  be a partition of the time interval [ , ]0 T .  Furthermore suppose that the 

underlying security follows piecewise geometric Brownian motion, in the sense described below,  

over the interval [ , ]0 T .   Specifically, assume that the underlying security can be modeled as a 

process,  S t t T( )| [ , ] 0 , which, under the risk neutral probability measure, satisfies a stochastic 

differential equation (SDE) of the form 

 

                 dS t t S t dt t S t dW t t T( ) ( ) ( ) ( ) ( ) ( ), [ , ],= +      0                              (1) 

 

where  W t t T( )| [ , ] 0 is standard Brownian motion.  Here ( )t  and  ( )t  are deterministic 

functions of the piecewise constant form 
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Each method includes a technique for constructing, based on the SDE (1), an appropriate tree of 

discrete prices of the underlying security.   Each such technique uses a mathematical result, 

described below, for ensuring that branching probabilities from each tree node are appropriate 

(i.e., probabilities, for each node, must be non-negative and sum to one). 

 

Consider a tree node,  , at a  time slice, t i ,  where  0 i N ;  furthermore, assume that the 

logarithm of the price of the underlying security at this node is equal to log Sold .  We assume 

that node   branches into three nodes, at time slice t i+1 , with respective logarithm of the price 

of the underlying security of the form ( ) log , +1  Snew  ( ) log ,  Snew  and 

( ) log −1  Snew  where   and  log Snew  0 .    

 

Here ( ) log  Snew  is the value that, among all tree nodes at time t i+1 , is  closest to 

log Sold ti i+ + + 1 1  where  

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 and t t ti i i+ += −1 1 ;  furthermore, 

( ) log +1  Snew  and  ( ) log −1  Snew  are values for the two  nodes closest to the node with 

value  ( ) log  Snew .  Next  we associate with node   a discrete random variable, Y , which 

takes the values 
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We seek to determine p p pu m d,  and , above, so that the mean and variance of the discrete 

random variable Y  match those of the continuous random variable 

log Sold t Wi i i ti

+ ++ + +
+

 1 1 1
1

   (obtained by solving the SDE (1), with initial condition 

log ( ) logS t Soldi = , for the time interval [ , ]t ti i+1 ).   

 

By matching mean and variances as described above, and by ensuring that the probabilities sum 

to one, we obtain the following system of linear equations 
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      (2) 

 

for the unknowns p p pu d m,  and .  By algebraic manipulation, the linear system of equations 

above is equivalent to   
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Where 
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Notice that while the system of equations above has a unique solution, we have no guarantee that 

p p pu m d,  and  will be non-negative.   Next we determine a condition on A to ensure that 

p p pu m d, .,  0  

 

Recall that the branching rule from node   implies that  
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Dividing (5)  by  log Snew and substituting  B  for the right hand side of (4b), we have

 +   −
1

2

1

2
B , which we can rewrite as  
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1

2
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for some x [ , ]0 1 .  Solving (3) and substituting the right hand side of (4b) for B , we obtain 
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where x [ , ]0 1 .  Notice that the right hand side of (7) has no dependency on  .   

 

Analyzing the right hand side of (7) over the range x [ , ]0 1 , we obtain the condition 
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on A , which ensures that  p p pu m d, .,  0   Notice that (8) yields an equivalent condition on 

 log Snew , that is, 
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To summarize, for an arbitrary tree node on an arbitrary time slice, appropriate branching 

probabilities are given as the solution of (2) provided that condition (9)  holds.  In Appendix B 



we examine the sensitivity of solutions to (2) with respect to perturbations in the values of 

 log Snew  and  . 

 

In this section we present the techniques for generating a tree appropriate for pricing the barrier 

options described in Section 2.  We consider single barrier options first. 

 

Suppose that we have constructed a tree up to time  t i , where 1 i N .    To expand the tree to 

the next time slice, we first define, at time t i+1 , an appropriate partition for the logarithm of the 

underlying security; then, using this partition, we determine the children and associated 

probabilities of all nodes at time t i .   

 

Note that, by an appropriate partition for the logarithm of the underlying security at time t i+1 ,  

we mean a partition such that the inter-node spacing is equal to  log Snew  where   log Snew  is 

chosen (as in Section 3.1.1) so that branching probabilities are non-negative.  Next we describe 

how to construct such a partition.   Then we discuss how to determine the branching and 

corresponding probabilities for nodes at time t i . 

 

To define a partition at time t i+1  (with uniform spacing,  log Snew , which satisfies the 

inequality (9)), we first determine whether, for some nodes at time t i , there is a branch that 

crosses the barrier at time  t i+1 .  This determination is made by checking certain conditions, 

defined in Appendix A, based on the branching rule (for nodes on the old time slice to nodes on 

the new time slice) defined.  I 

 



f we determine that the barrier will be crossed at time t i+1 , we generate a partition by placing a 

node on the actual barrier (i.e., either  H tu i( )+1  or   H td i( )+1 ) and all other nodes offset from the 

barrier by integer multiples of   log Snew .  Otherwise,  if the barrier will not  be crossed, we 

define an artificial barrier at time t i+1  (see Appendix A); we then generate a partition by placing 

a node exactly on the artificial barrier and all other nodes offset by integer multiples of  

 log Snew  from this barrier (here the artificial barrier simply acts as a point of reference for 

generating the partition).  We use for  log Snew  a value close to the upper bound, 2 1 1 i it+ + , 

in the inequality (9). 

 

Once an appropriate partition has been defined at time t i+1 , we then determine, according to the 

branching rule presented in Section 3.1.1, the children of each node at time  ti .  Suppose that a 

particular node  at time  ti  (with value for the logarithm of the underlying security equal to 

log Sold ) branches to nodes at time  t i+1  with values for the logarithm of the underlying security 

equal to au , am  and ad , respectively,  where a a au m d   . Then, from (2), appropriate 

branching probabilities are determined by solving the system of linear equations 
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for the unknowns p pu d,  and pm .    The numerical conditioning of the system of linear 

equations above should be checked, however, to ensure the accuracy of the computed solution. 

 

The tree construction technique for double barrier options is based on a similar approach as for 

single barrier options.  That is, if the tree has been constructed up to time t i , an appropriate 



partition for the underlying security is defined at time t i+1 ; then branches and associated 

probabilities are determined for nodes on the old time slice.  We describe these techniques next. 

 

Suppose that the tree has been generated up to time t i , where 1 i N .  If neither barrier is 

crossed at time t i+1 , then an artificial barrier is defined, at time t i+1 , and used (as a point of 

reference) to generate an appropriate partition.  Otherwise, a partition is defined that places 

nodes on both barriers (see below).  Once a partition is defined, branching and corresponding 

probabilities are determined as above. 

 

Next we show how to construct a uniformly spaced partition for the logarithm of the underlying 

security price at a time slice, t i , so that nodes are placed on both the upper and lower barriers.   

We begin by placing a node on the logarithm of the upper barrier, log ( )H tu i .  Then we attempt 

to place a node on the logarithm of the lower barrier, log ( )H td i , making sure that condition (9) 

in Section 3.1.1 holds. 

 

Let  
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 and  log maxSnew ti i= 2  denote, respectively, the lower 

and upper bounds in the inequality (9) (with respect to time slice t i ).  Also let 

 log log ( ) log ( )H H t H tu i d i= −  be the difference in the logarithm of the upper and lower 

barrier values at time t i .  Now let j
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intervals contained in | log | H .  We seek  

                            log [ log , log ]min maxSnew Snew Snew   

such that 

                                           j Snew H( log ) | log | = .                                                    (10) 



Observe that the only way (10) can fail to hold is if j Snew H( log ) | log |max  , that is, 
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Next notice that (11) is of the form   3   , for  R , which does not hold for any   2  

(i.e., in the case there are at least three nodes between the upper and lower barriers). 

 

To summarize, as long as 
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we then decrease  log minSnew  by decreasing t i .  Next we take 
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