
 

 

Lookback Call Option Model 

 

A model is presented for pricing a European lookback call option on a stock index with 

guaranteed exchange rate (LBCGER).   

 

The LBCGER specification includes an exercise time, T  (where T  0 ),  the guaranteed 

exchange rate, GER, and two parameters, lookmin  and  lookmax    (where 

0   look look Tmin max ), which define a lookback window [ , ]min maxlook look .  In addition a 

sampling frequency (e.g., daily, weekly, etc.) over the lookback window is specified. 

 

Let S t  denote the value at time t  for the underlying security.  The strike of the LBCGER, K ,  is 

set equal to the minimum price of the underlying security over a set of discrete points, ti i

N

=1
, 

which partition the lookback window according to the sampling frequency.  That is, 

 

K Si N ti
= =min ,...,1  

 

where look t t lookNmin max=   =1  .  If, for example, the lookback window is to be partitioned 

into N   uniformly spaced points, then,  

 

t look i ti = + −min ( )1  , 



 

for i N= 1,..., ,   where t
look look

N
=

−

−

max min

1
. 

 

The payoff at maturity is the value of a standard European call with strike K  adjusted by the 

guaranteed exchange rate GER , that is, 
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                           otherwise.  0
 

 

The method for pricing a lookback call option with guaranteed exchange rate is based on a single 

factor Monte Carlo approach.  The idea of the method is to  stochastically generate a large 

number of discrete sample paths for the underlying security.   

 

For each path, the minimum value of the underlying security over the set of lookback window 

sample times,  t i i

N

=1
 , is recorded and used to compute the quantity adjusted payoff (by a certain 

application of the Black-Scholes pricing formula).  The payoffs for each path are then combined 

to provide an expected payoff for the option.  Next we describe the method in detail. 

 

Risk neutral pricing formulas are presented for various types of cross-currency instruments, in 

particular, European call options with payoffs at maturity of the form 

 

                                          max( ,[ ] )0 S K GERT −  . 

 



Let X t   and S t  denote respectively the value of the foreign exchange rate and the price of the 

underlying security at time t .  According to Wei, the processes   S t Tt | [ , ] 0   and 

 X t Tt | [ , ] 0 respectively satisfy, under the (domestic) risk neutral probability measure, the 

SDEs 
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where  Z t Tt | [ , ] 0  and   W t Tt | [ , ] 0  are standard Brownian motions  with constant 

instantaneous correlation    (here r r qd f S, , ,  and  X  are certain constants described below).   

In (3.1.1a), r f  denotes the foreign risk-free rate for the time period [ , ]0 T , q  is the continuous 

dividend yield for S t  over the period [ , ]0 T ,  and  S  is the instantaneous volatility for the 

proportional change, 
dS

S

t

t

, over the period [ , ]0 T .  In (3.1.1b), rd  represents the domestic risk-

free interest rate https://finpricing.com/lib/IrCurve.html) for the period [ , ]0 T , and  X  is the 

instantaneous volatility in the proportional change, 
dX

X

t

t

, over  [ , ]0 T .   

 

In this section we formulate the price of the LBCGER at time equal to zero.   Let  ti i

N

=1
 be a 

partition of the lookback window [ , ]min maxlook look . Recall, from Section 2, that 
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is the payoff at maturity for the LBCGER (here ST  is the price for the underlying security at 

maturity and K Si N ti
= =min ,...,1 is the minimum of the underlying security price over the discrete 

set of sample times  ti i

N

=1
).   At time equal to zero, the price of the LBCGER  is equal to the 

discounted expected payoff at maturity, 

 

     e E f S Kr T

T
d− ( ( , )) .             (3.2.1) 

 

However, by the law of iterated conditional expectations, (3.2.1)  is equal to 

 

                                             e E E f S K Fr T

T t
d

N

− [ ( ( , )| )]            (3.2.2) 

 

(here  F t Tt | [ , ] 0  is the filtration induced by the process  W t Tt | [ , ] 0 ).   The formulation 

(3.2.2) for the price at time zero has certain computational advantages (as we will see in Sections 

3.3 and 3.4). 

 

Next  we show how to approximate (3.2.1). 

 

From (3.2.2) and by algebraic manipulation, the price of the LBCGER at time zero is equal to 
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Notice, however, that the conditional expectation 

 

e E f S K Fr T t
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can be viewed as the price of a European call on a domestic asset with dividend yield of  

 

    ( )q r r qf d S X= − − − −   .     (3.3.2)  

           

To be specific, let  BS T r q spot strike( , , , , , )  denote the Black-Scholes price of a European call,  

where T  denotes the option maturity,   denotes volatility, r  denotes the riskless interest rate, 

q  denotes the continuous dividend yield, spot  is the initial value for the underlying security, 

and strike  is the option strike level.  Then (3.3.1) is equal to 

 

   BS T t r q S K GERN S d tN
( , , , , , )−  .    

 

Next we describe a Monte Carlo technique, based on the Black-Scholes analysis above, for 

computing the price, (3.2.2),  of the LBCGER  at time zero. 

 

From the SDE (3.1.1a) and by  Ito’s lemma, the  process   S t Tt | [ , ] 0  satisfies the SDE 
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where   = − −r qf X S  is the drift term in the SDE (3.1.1a).  A discrete sample path, 

 S i Nti
| ,...,= 1 , can be generated efficiently by the iterative scheme 
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for  i N= −1 1,..., , where i  is a random sample from the standard normal distribution and 

t t ti i i= −+1 .  Note that, since the drift and volatility parameters in the SDE (3.4.1) are constant, 

we can “jump” directly to the start, t1 , of the lookback window.  That is, in the iterative scheme 

(3.4.2), we set 
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where  0  a random sample from the standard normal.  Note also that the iterative scheme (3.4.2) 

is not employed by Financial Products, New York; rather, a computationally less efficient 

sampling scheme, which is described in Section 4, is used. 

 

Let   = =S i Nti
| ,...,1  be a discrete sample path generated by the scheme (3.4.2), and let  

 



     K Si N ti
= =min ,...,1                                               

 

be the minimum of all discrete sample times in the lookback window.  Then 
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is the payoff for path  .  A Monte Carlo approximation to (3.2.1), based on M  sample paths, is 

then given by 
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