Coordinated solar observations with ALMA:

Issues, constraints, how to plan them – an ALMA-centric view

Miro Barta & the Czech EU_ARC-node team

barta@asu.cas.cz

in collaboration with Tim Bastian (NA ARC), Masumi Shimojo (EA ARC), and Antonio Hales (JAO)

EUROPEAN ARC ALMA Regional Centre || Czech

- ALMA a brief intro
 - EU ARC as your support infrastructure
- Solar ALMA observations: Current status, outlooks
 - Solar ALMA Observing Mode: Capabilities & limits
- Life-cycle of the solar ALMA observation project: From the initial idea to receiving calibrated images
 - Time constrains for solar ALMA observations
 - By season
 - By hour-of-the-day
 - Scheduling your project for ALMA observation
 - Communication line to JAO & ARC
- Coordinated observations with (selected) space-born observatories
- Including ground-based solar telescopes a successful example
- Summary

- ALMA = Atacama Large Millimeter/sub-millimeter Array. The largest project of contemporary ground-based observational facility in astronomy built in a world-wide international cooperation in Chile
- The key partners are ESO, NRAO and NAOJ
- System of fifty 12m high-precision antennas + twelve 7m (ACA) phased as an interferometer, + four 12m single-dish (TP)

For the first time we (will) have

- □ Very high spatial resolution (up to 0.005" in extended configuration @ 1THz ↔ 2m object at the Moon)
- Extremely high spectral resolution up to 30kHz
- □ Temporal resolution for very bright sources (e.g. the Sun) > 1s
- Very high sensitivity

at the same moment in a broad range of frequencies from 30GHz up to more than 1THz

ALMA hardware

ALMA hardware

ALMA Regional Centers – ARCs:

Supporting infrastructure – interface between ALMA observatory and user community User support & help with ALMA development

Structure of the European ARC:

- Head in ESO Garching
- Seven nodes across Europe
 - One in Ondřejov (Prague), Czech republic Unique (in Europe) expertise for solar ALMA observations.

EUROPEAN ARC ALMA Regional Centre Acceptace of the *Solar ObsMode* – Start of solar science with ALMA: Since Cy4 (Spring 2017)

Solar ObsMode

- Accepted as a non-standard science mode for Cy 4 with limitations
- Summary of CSV published in two Solar Physics papers Fast-scanning TP: <u>http://adsabs.harvard.edu/abs/2017SoPh..292...88W</u> Interferometric obs.: <u>http://adsabs.harvard.edu/abs/2017SoPh..292...87S</u>
- ESO press-release no 1703 (also ALMA Science Portal news)

• Non-standard mode

- Limited capabilities: Bands 3 & 6 (Band 5 since Cy8) only, TDM only (i.e. 128 channels per 2GHz SPW), configurations limited to ≤ C43-3 (43-4 for Band 3), no polarization,...
- Combined 12m+7m array, always have complementary TP maps (entire Sun – fast-scanning mode; no regional TP map so far).
- Using SIS mixer detuning (MD) approach for attenuation of too strong signal from the Sun. Likely not sufficient for flares.
- **Ephemeris targets** (solar motion among stars + solar diff. rotation).
- Literally manual calibration & imaging (even no Script Generator so far).
- Solar science goals are mostly *Targets of Opportunity* by matter (but not technically).
- The Sun is dynamic/highly variable Need advanced data post-processing (time-domain imaging + self-calibration) beyond the standard data calibration and synthesis done at ARCs in frame of the QA2 data processing.

- Bands 5 & 7, polarization (already being tested EA ARC, JAO)
- Automated data processing (standard QA2) Solar Script Generator (under development, Ondrejov), later ALMA pipeline integration
- Advanced data post-processing (time-domain imaging +self-cal: under development – UiO, NA & EA ARCs)
- Extended baselines (C43-4+) an ALMA Development Study proposal submitted in 09/2019 call (revised version in May 2020; PI Ondrejov), waiting for decision.
- Further considered capabilities: Spectral observations (FDM), sub-arrays, regional TP scans – some already started to be investigated, some are just wishes of solar-research community (no other group is interested, so hard to implement)
- Very inofficial: Early consideration of making joint proposals for ALMA & other large observatories (it is a question, whether the large solar telescopes might be included later).

Life-cycle of ALMA observation project: Data flow and SW

2nd SolarNET forum "Telescopes & Databases"

- Phase I proposal submission: Mid April (yearly)
- Evaluation of proposals: (end of) June (APRC meeting) (mid) August (results released). Planned change (2022+): Peer review
- Phase II SB approval by PI: September
- Scheduling, SB finalization & Observations: Depending on the array configuration schedule! (next slide)
- (Processed & QA2 "certified") Data delivery: ~Two weeks after observation (sometimes later in case of issues)

Complete Cycle 7 Configuration Schedule

Сус	le	8
-----	----	---

Start date	Config	min - max baseline (m)	beam (") ¹	maximum recoverable scale (") ¹
2019-10-01	C43-4	15-784	0.92"	11.2"
2019-10-20	C43-3	15-500	1.4"	16.2"
2019-11-10	C43-2	15-314	2.3"	22.6"
2019-11-30	C43-1	15-161	3.4"	29.0
2019-12-20	C43-2	15-314	2.3"	22.6"
2020-01-10	C43-3	15-500	1.4"	16.2"
2020-02-01	February Ma	aintenance Pe	eriod	
2020-03-01	C43-4	15-784	0.92"	11.2"
2020-03-01 2020-03-20	C43-4 C43-5	15-784 15-1400	0.92" 0.54"	11.2" 6.7"
2020-03-01 2020-03-20 2020-04-24	C43-4 C43-5 C43-6	15-784 15-1400 15-2500	0.92" 0.54" 0.31"	11.2" 6.7" 4.1"
2020-03-01 2020-03-20 2020-04-24 2020-05-27	C43-4 C43-5 C43-6 C43-7	15-784 15-1400 15-2500 64-3600	0.92" 0.54" 0.31" 0.21"	11.2" 6.7" 4.1" 2.6"
2020-03-01 2020-03-20 2020-04-24 2020-05-27 2020-06-20	C43-4 C43-5 C43-6 C43-7 C43-8	15-784 15-1400 15-2500 64-3600 110-8500	0.92" 0.54" 0.31" 0.21" 0.096"	11.2" 6.7" 4.1" 2.6" 1.4"
2020-03-01 2020-03-20 2020-04-24 2020-05-27 2020-06-20 2020-07-11	C43-4 C43-5 C43-6 C43-7 C43-8 C43-9	15-784 15-1400 15-2500 64-3600 110-8500 368-13900	0.92" 0.54" 0.31" 0.21" 0.096" 0.057"	11.2" 6.7" 4.1" 2.6" 1.4" 0.81"
2020-03-01 2020-03-20 2020-04-24 2020-05-27 2020-06-20 2020-07-11 2020-07-30	C43-4 C43-5 C43-6 C43-7 C43-8 C43-9 C43-10	15-784 15-1400 15-2500 64-3600 110-8500 368-13900 244-16200	0.92" 0.54" 0.31" 0.21" 0.096" 0.057" 0.042"	11.2" 6.7" 4.1" 2.6" 1.4" 0.81" 0.50"
2020-03-01 2020-03-20 2020-04-24 2020-05-27 2020-06-20 2020-07-11 2020-07-30 2020-08-20	C43-4 C43-5 C43-6 C43-7 C43-8 C43-9 C43-10 C43-9	15-784 15-1400 15-2500 64-3600 110-8500 368-13900 368-13900	0.92" 0.54" 0.31" 0.21" 0.096" 0.057" 0.042"	11.2" 6.7" 4.1" 2.6" 1.4" 0.81" 0.50" 0.81"

Start date	Configuration	Longest baseline	LST: Best conditions
1-Oct-20	C-8	8.5 km	22-10
20-Oct-20	C-7	3.6 km	23-11
10-Nov-20	C-6	2.5 km	1-13
1-Dec-20	C-5	1.4 km	2-14
20-Dec-20	C-4	0.78 km	4-15
10-Jan-21	C-3	0.50 km	5-17
1-Feb-21	No observatior	ns due to maintenan	се
1-Mar-21	C-1	0.16 km	8-21
26-Mar-21	C-2	0.31 km	9-23
20-Apr-21	C-3	0.50 km	11-0
10-May-21	C-4	0.78 km	12-2
31-May-21	C-5	1.4 km	13-4
23-Jun-21	C-6	2.5 km	15-6
28-Jul-21	C-5	1.4 km	17-7
18-Aug-21	C-4	0.78 km	19-8
10-Sep-21	C-3	0.50 km	20-9

- Solar ALMA observations usually held in a campaign mode (dedicated time interval ~4 weeks, usually split into two parts)
- Detailed schedule prepared together by ARCs: EU (Miro Barta), NA (Tim Bastian), and EA (Masumi Shimojo). Finally approved by JAO (see an example at the next slide).
- The first draft of the schedule is prepared by the nature of science goals and reasonable mid-term solar activity forecast.
- The PIs are requested to stay in touch with their CS via ALMA Helpdesk and express their wishes and constraints given by requirements for coordinated observations.

Ħ	SolObsS	Sched_(View	Cycle5_20	18r7 nat Data	Tools Add-ons	Help											Sh	are Sign in
•	▼ - 100%	- 0	View only 👻															^
¢																		
	А	В	с	D	E F	G	н	1	J	к	L	м	N	0	Р	Q	R	s
	Date	:	Start(UT)	End(UT)	indow (h Config	SB	PI	CS	ative	RaAPRC Rank	Project	O bje cti ve		Grade	s SB Name	AoD Lead	Status	
	1/4/2018	Sun	13:44:00	19:24:00	5.68 C43-3	2h B3M	Shimojo	Shimojo	1	17	2017.1.00072.S	Polar CH		А	Sun 10 a 03 INT		Pass	Please start at ~1325
						2hB3M									Sun_10_a_03_INT		Pass	
	3/4/2018	Tue	13:45:00	19:21:00	5.62 C43-3	2hB3M	Shimojo	Shimojo	1	17	2017.1.00072.S	Polar CH		А	Sun_10_a_03_INT		Pass	Please start at ~1325
						2hB3M									Sun_10_a_03_INT		Pass	
	4/4/2018	Wed	13:46:00	16:00:00	2.23 C43-3	1hB3M	Leenarts	Barta	1'	8 (at Cycle	2016.1.00298.S	AR		А	Sun_10_a_03_INT		Sem i-pass	Only 10 mins on targ
						1.5h B6M									Sun_10_a_06_INT		Pass	
	5/4/2018	Thu	13:47:00	19:18:00	5.53 C43-3	2hB3M	Okamoto	Shimojo	4	189	2017.1.00009.S	Prom		В				
						2h B3M												
)	7/4/2018	Sat	13:49:00	16:00:00	2.18 C43-3	2hB6M	Peter		3	172	2017.1.01059.S	Em AR		В	Sun 10 a 06 INT		Not Observed	Please start at ~1330
1	8/4/2018	Sun	13:50:00	19:14:00	5.42 C43-3	2h B3M	Okamoto	Shimojo	4	189	2017.1.00009.S	Prom		В			Pass	
2						2h B3M											Pass	
3	10/4/2018	Tue	13:51:00	19:11:00	5.35 C43-3	2.5 B3S	Chen	Bastian	6	222	2017.1.01672.S	Spot		В	Sun Band a 03 I	νT	Not Observed	Please start at ~1330
1						1.2 B6S									Sun Band a 06 I	NT	Not Observed	ł
5						0.7h B6S									Sun Band b 06 I	NT	Not Observed	ł
5						0.7h B6S									Sun Band c 06 IN	νT	Not Observed	ł
,	11/4/2018	Wed	13:52:00	16:00:00	2.13 C43-3	2h B 6S	Okamoto	Shimojo/Kim	4			Prom			Sun 10 b 03 INT	Juan Cortes	Not Observed	J
3	12/4/2018	Thu	13:53:00	19:08:00	5.27 C43-3	1.9h B6S	Nindos	Barta	2	154	2017.1.00653.S	QS		в	Sun 10 a 06 INT	Juan Cortes	Pass	Please start at ~1335
9						1.9h B3S									Sun 10 a 03 INT	Juan Cortes	Pass	
)	14/4/2018	Sat	15:00:00	16:00:00	1 C 43-3											Juan Cortes		VLBI ends at 15 UT
1						1.3h B3S									Sun 10 a 03 INT			
2	17/4/2018	Tue	15:00:00	19:00:00	4 C 43-3	2h B 6S	Labrosse	Barta/Berlicki	7	239	2017.1.01138.5	Prom		В	Sun 10 a 06 INT	Juan Cortes	Pass	VLBI ends at 15 UT
3						2h B 3S									Sun 10 b 03 INT	Juan Cortes	Pass	
1						1hB3M									Sun 10 a 03 INT	Juan Cortes	Pass	
5	19/4/2018	Thu	14:01:00	18:57:00	4.95 C 43-3	2h B3M	Labrosse	Barta/Berlicki	7	239	2017.1.01138.S	Prom		В	Sun 10 a 03 INT	Bill Dent	Pass	
5						1h B 3S									Sun 10 b 03 INT	Bill Dent	Pass	
7	21/4/2018	Sat	14:03:00	16:00:00	2	2h B 6	Okamoto	Shimojo			2017.1.00009.S				Sun 10 b 06 INT		Pass	
3	24/4/2018	Tue	14:06:00	18:50:00	4.75 C43-3	1hB3M	Leenaarts	Barta/Murato	1'								Not Observed	1
9						1.5h B6M											Not Observed	j
)	26/4/2018	Thu	14:09:00	18:46:00	4.63 C 43-3	2.5h B3S	Chen	Bastian	6		2017.1.01672.S	AR		в	Sun Band a 03 I	I. Toledo	Pass	
1	28/4/2018	Sat	14:11:00	16:00:00	1.82 C43-3													
2	29/4/2018	Sun	14:13:00	18:42:00	4.5 C43-3	1.5h B6M	Leenaarts	Barta/Murato	1'		2016.1.00298.S	AR		в	Sun 10 a 06 INT	I. Toledo	Pass	
3	, ,					1 h B3M			_						Sun 10 a 03 INT	I. Toledo	Pass	
1	5/1/2018	Tue	14:15:00	18:39:00	4.42 C43-3	2h B 6M	Antolin	Barta/Murato	5	195	2017.1.00870.S	Lim b AR			Sun 10 b 06 INT	I. Toledo	Pass	i i
5						2hB3M									Sun 10 b 03 INT	I. Toledo	Pass	

- A couple of days the PI submits the Target of Opportunity (ToO) ticket and adds (later, 2days before obs. actually happens) the observation details there (e.g., HPC coordinates/target-tracking info/ephemeris – see the next slide, dimensions/shape/PA of the FoV, back-to-back SBs -Y/N,...)
- The ToO ticket stays open during entire preparation phase up to successful observation is completed. The ALMA AoDs + Hinode and IRIS coordinators are automatically included into this communication.
- Things to take into account on the day/hours scale:
 - ALMA AOS is 67.7W, 23S → local ALMA time = UT 4.5 hour, seasons are opposite then in Europe.
 - Sun's elevation must be between 40 and 70 degs.
 - The weather (PWV) tends to worsen with (local) time high-frequency obs. better to be done in local morning.
 - Should the TP observations are critical for you, avoid windy periods (see the weather stats at ALMA website)

ALMA Ephemeris Generator Tool

File: AIA image (test)	 Procházet Soubor nevybrán.
Date: 2015-02-27T13:54:	42.8 Size: 1024x1024 Format: 32 View header
Visualization	

pixel (x, y)	-			
helioprojective	(x, y in arcsec) -			
heliographic (L	, B in deg) -			
Observation				
Start of observation	ation (UT): 2015-08-2711	8:10:47		
End of observa	tion (UT): 2015-08-28T18	3:10:47		
Step size (min	utes): 20			
Differential rota	tion profile: No rotation	ı		
A: 0	🖨 B: 0		C: 0	
Halabe above	hotosphere (km): 0			

http://celestialscenes.com/alma/coords/CoordTool.html

Accessible from *ALMA Science Portal* http://www.almascience.org

Author: Ivica Skokic

Nowadays used for (E)VLA and other observatories, too.

Choose the FoV and tracking info, then generate the ephemeris.

Life-cycle of ALMA observation project: An ultrashort-scale timing – tracking the target

This sunspot Band 6 image is a mosaic Of ~150 pointings, each takes 7.5 s

FoV for SP is ~25"

- Co-ordination with Hinode and Iris works automatically these instruments adapt to the ALMA targets. The target and tracking info has to be submitted via ALMA ToO ~2 days prior the observation starts. Basically all solar ALMA observing projects received successfully the space-born coordinated observations.
- It is possible to plan coordinated observations with PSP not automated, PI must apply for time at PSP
- Coordinated observations ALMA + Hinode + SDO + ground-based optical telescopes exist, too – in Europe we have a working example:

ALMA project Cy6 2018.1.01518.S, *Heating in small-scale explosive events in the chromosphere*, PI Joao Manuel da Silva Santos, **SST included**. Observed in April 2019.

PI name	SB name	Proposal authors	Line sens. (10 km/s)	PWV	Group ous id	Member ous id	Asdm uid	Project title	Туре	Scan intent	QA2 Status
Santos 🛞			mJy/beam ▼	mm •							
da Silva Santos, Joã	Sun_10_a_03_INT	Vissers, Gregal; Leen	0.62	0.50	uid://A001/X133d/X3239	uid://A001/X133d/X323a	uid://A002/Xdab261/X130	Heating in small-scale e	S	TARGET	PASS
da Silva Santos, Joã	Sun_10_a_06_INT	Vissers, Gregal; Leen	1.75	0.41	uid://A001/X133d/X3233	uid://A001/X133d/X3234	uid://A002/Xdab261/X11f	Heating in small-scale e	S	TARGET	PASS
da Silva Santos, Joã	Sun_10_a_03_TP	Vissers, Gregal; Leen	45.17	5.19	uid://A001/X133d/X3239	uid://A001/X133d/X323c	uid://A002/Xdab261/X131	Heating in small-scale e	S	TARGET	PASS
da Silva Santos, Joã	Sun_10_a_06_TP	Vissers, Gregal; Leen	29.83	1.80	uid://A001/X133d/X3233	uid://A001/X133d/X3236	uid://A002/Xdab261/X120	Heating in small-scale e	S	TARGET	PASS

- ALMA has very hard/unavoidable constraints for solar observations, especially timing on the scale of months related to appropriate array configuration – you have to try to adapt your co-observations to this constraints.
- Local time at AOS is UT 4.5h, seasons are reverted to Europe take this into account when planning coordinated observations. The elevation of the Sun at AOS must be 40 – 70 degs.
- Short time-scale coordination happens on the scale weeks/days and takes place over ALMA ToO ticket. Please, keep your CS informed about your plans concerning the coordinated observations (via ALMA Helpdesk)!
- Hinode and SDO/AIA make overtake the ALMA solar targets automatically, keep the instrument observers informed via the ALMA ToO, deadline is ~2days before observations.
- Coordination with European telescopes is more demanding (reverted seasons, local time-lag,...) but not impossible we have a nice working example (ALMA + SST + Hinode) from Cycle 6.
- Future (ALMA) development may relax some constraints (more extended configurations for Solar ObsMode, easier joint proposal).
- Covid-19 has caused (at least) 1 year gap in ALMA observations.