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2.2.2 Transport through an atmosphere

Optical depth. Sofar, τν has denoted optical thickness, measured along the beam in
the photon propagation direction. Since this course is mostly concerned with objects of
which the total optical thickness along the line of sight is far too large to be of any interest,
I now switch notation and use τν from here on for radial optical depth, as most authors
do. In the context of stellar atmospheres, one often adopts axial symmetry with the z-axis
radially outward along the axis of symmetry (perpendicular to the surface of a spherical
star consisting of horizontally homogeneous shells). The viewing angle µ is then defined by
µ ≡ cos θ where θ specifies the angle between the line of sight and the z-axis. In addition,
plane-parallel stratification is usually assumed so that the angle µ does not vary along the
line of sight as is the case for curved layers. I do the same throughout this course. In some
cases, I will use the angle-dependent optical depth τνµ

dτνµ ≡ −αν
dz

|µ| (2.37)

which is measured along the viewing direction, with µ > 0 outwards for outgoing photons
and µ < 0 inwards for incoming photons. In most cases, however, I will use the radial
optical depth τν which for a geometrical location with z = z0 is given by

τν(z0) =
∫ z0

∞
−αν dz =

∫ ∞

z0

αν dz, (2.38)

and which measures the optical depth along the radial line of sight with µ = 1, from τν = 0
at the observer’s eye located at z = ∞. For a frequency within a spectral line the total
optical depth is given by

dτ total
ν = −(αc

ν + αl
ν) dz = (1 + ην) dτ c

ν (2.39)

with ην ≡ αl
ν/α

c
ν and τ c

ν the continuum optical depth.

Standard plane-parallel transport equation. The use of radial optical depth de-
livers the standard form of the radiation transport equation in plane-parallel geometry:

µ
dIν

dτν
= Iν − Sν . (2.40)

Formal solution. For axial symmetry the inward directed intensity (µ < 0) is, using
tν ≡

∫ z
∞−αν(z) dz as τν-like integration variable (e.g., Gray 1992 p. 114):

I−ν (τν , µ) = −
∫ τν

0
Sν(tν) e−(tν−τν)/µ dtν/µ (2.41)

and the outward directed intensity (µ > 0) is:

I+
ν (τν , µ) = +

∫ ∞

τν

Sν(tν) e−(tν−τν)/µ dtν/µ. (2.42)

LTE: set by collisions, depends only on local conditions 
NLTE: set by collisions and radiation, depends on radiation everywhere! 
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Ca i Ca ii

Fig. 1. Grotrian diagram representing the Ca I (left panel) and Ca II (right panel) levels and radiative transitions (grey) used in our model atom. The
horizontal black solid lines represent super levels. The dashed line in each diagram shows the ionisation limit. Only the lowest levels are labelled
to ease visualisation.

not affected by any artificial energy gap (similarly for the gap
between Ca II and Ca III). Second, the fine-structure splitting of
the levels is needed in order to directly compare the synthetic
spectrum with the observation of lines for which fine structure
produces asymmetric profiles, or that are seen as fully resolved
lines. Third, the transitions used in the visual and IR to compare
with observations do not come from merged levels.

Our final model atom has 127 levels in total (96 for Ca I, 30
for Ca II and the ground level of Ca III). For Ca I, all the triplets
up to the 3d.3d(3F) levels are split into their fine structure com-
ponents, except for the triplet 4s.4f(3F), which is represented by a
single level. From the 4s.7s(3S) up to the 4s.8f (1F) level, triplets
are merged into a single level, except for the 4s.7p(3P), 4s.8d(3D)
and the 3d.5s(3D) levels. The levels with n= 6, l � 4 are merged,
as are those with n= 7, l � 4, and n= 8, l � 4. We use super levels
for the levels with 9  n  15. The energies for the 3d.3d(3P) lev-
els (also included in the final model atom with split fine-structure
components) are similar to those for the n= 12 super level.

Ca II consists only of doublets. Fine-structure components
were split for all levels up to 6p(2P), except for the 4f(2F) level.
The 5f(2F), 5g(2G), 6d(2D), and 6f(2F) levels were also repre-
sented by one level each. For n= 6, l � 4, a single level was used;
we used super levels for 7  n  15. Isotopic splitting was con-
sidered for the Ca II triplet lines (wavelength shifts were taken
from Leenaarts et al. 2014; Nörtershäuser et al. 1998) and using
the solar-system isotope abundance ratios (Anders & Grevesse
1989; Asplund et al. 2009).

Our final model atom has 120 bound–free transitions and
1808 bound–bound transitions (1656 of Ca I and 152 of Ca II).
When a level that has been merged is involved in a transition, the
excitation oscillator strength fi j is re-scaled as

f 0i j = fi j
gi

g0i
,

where f 0i j denotes the new, re-scaled, excitation oscillator
strength and gi, g0i are the statistical weights of the original and
the new (merged) low level of the transition, respectively. Radia-
tive data for the most relevant transitions of Ca used in this work
are shown in Table A.1. Grotrian diagrams for Ca I and Ca II are
shown in Fig. 1.

2.2. Collisional data

The main collisional perturbers in cool stars are electrons
(due to their high velocity) and hydrogen atoms (due to their

abundance). We consider four collisional processes, and their
inverse through detailed-balance relations: electron collisional
excitation and ionisation, hydrogen collisional excitation, and
charge exchange with hydrogen. In the latter, an atom of Ca I
transfers one of its electrons to the colliding hydrogen atom in
its ground level and, as a result of this collision, an ionised atom
(Ca II) and a negative hydrogen ion (H�) are produced. When
levels are merged, the final transition is the sum of the transi-
tions between the levels involved, weighted with the statistical
weight of the initial levels of the transitions to merge. Below,
we provide a description of the data used to represent all these
processes.

2.2.1. Electron collisions

Electron collisional ionisation for all levels of Ca II and the
low-lying levels of Ca I were calculated with the hydrogenic
approximation presented in Cox (2000), based on the semi-
empirical formulation in Bely & van Regemorter (1970) which
is original from Percival (1966). For the levels above the
4s.6s(1S) level of Ca I, we used the formula from Vrinceanu
(2005), suitable for electron collisional ionisation of Rydberg
states of neutral atoms, and which takes into account the
electronic angular momentum of the Rydberg level.

The adopted electron collisional excitation rates for Ca I are
an extension of the rates calculated by Zatsarinny et al. (2006).
This extension includes electron collisional excitation cross sec-
tions between the lowest levels of Ca I and 4s.8s(1S), using the
B-spline R matrix (BSR) method. Electron collisional excita-
tion of Ca II for levels up to n= 8 were taken from Meléndez
et al. (2007). For higher levels, we neglected dielectronic transi-
tions and tested both the impact parameter method (IPM, Seaton
1962 for neutral species and Burgess et al. 1977 for positive ions)
and the van Regemorter (vR) formula (Bely & van Regemorter
1970; van Regemorter 1962), finally adopting the IPM rates.
The vR formula is based on the Born approximation, which is
known to overestimate electron collisional cross-sections at low
energies (see Seaton 1962). Our previous work on Mg (Osorio
et al. 2015) also showed that the use of the IPM (when no
quantum mechanical calculations are available) reproduces the
IR Mg I emission lines observed in the Sun, but that if we
used the vR formula instead, the above-mentioned lines cannot
be reproduced.

We decided to neglect dielectronic transitions based on com-
parison between one and two electron transitions calculated for
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Non-LTE: need large amounts of atomic data
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tionary shocks at the edges of the intergranular lanes (Fig.
et al. & Stein et6) (Malagoli 1990 ; Nordlund 1991b ; Nesis

al. et al. These shocks heat the Ñuid but1992 ; Solanki 1996).
do not increase its density because gravity pulls down the
denser material that falls out the bottom. The shocks at the
edges of integranular lanes are, however, a rare occurrence.
At any one time, supersonic Ñow occurs in only D3%È4%
of the surface.

4.2. Vorticity
Where the Ñow turns down at the intergranular lanes,

pairs of whirls of high horizontal vorticity occur (Figs. and4
[Pl. 21]). With increasing resolution these become more7

turbulent, as can be seen by the complex intertwining of the
vortex tubes. There is little vorticity in the granule interiors
(visible as the holes in Fig. 7).

The source of the vorticity can be quantiÐed by evalu-

ating the equation for the vorticity,

Lx

Lt
\ [(u É +)x [ x$ Æ u ] (x Æ $)u

[+
AP
o
B

Â $ ln P] $ Â $ Æ r . (8)

The Ðrst term on the right-hand side is advection, the
second is vortex stretching, the third is vortex tube tilting,
the fourth is baroclinicity, and the last is viscous di†usion.
Note that the vortex stretching term [x$ Æ u \ xD ln o/
Dt, which shows that vorticity su†ers dilution in upÑows
and concentration in downÑows.

The primary source of vorticity is the baroclinic term. It
becomes large near the edges of granules, where the two
gradients are large and nonparallel. Inside granules, on the
other hand, the two gradients are very nearly parallel
because of the nearly isentropic conditions there. In down-

FIG. 6.ÈContours of Ñuid Mach number greater than 1 near the solar surface superimposed on an image of the emergent intensity. Supersonic Ñows
occasionally occur just before the horizontally moving Ñuid is decelerated in shocks at the edges of the intergranular lanes and in downdrafts within
intergranular lanes. The axes are the grid index. Each cell is 24 km.
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FIG. 14.ÈTemperature as a function of geometric depth at several horizontal locations plus the average temperature proÐle. Locally the temperature
proÐle is much steeper than the average proÐle.

port. In the near surface layers, energy is transported pri-
marily as ionization energy, Fionization\ [e[ 32(P/o)](ou

zand thermal energy,[ Sou
z
T), (D23) Fthermal\The kinetic energy Ñux,32(P/o)(ou

z
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z
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z
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z
T),

transports energy downward in the faster downdrafts
(Fig. 16).

5.5. Convective Driving
Driving of the convective Ñows comes primarily from the

intergranular lanes and downdrafts. The buoyancy forces
driving the convective motions are signiÐcantly larger in the
downÑows than in the upÑows, below the surface, because
the entropy Ñuctuations are much larger in the downÑows,

FIG. 15.ÈTemperature as a function of optical depth at several horizontal locations plus the average temperature proÐle. On an optical depth scale, the
temperature proÐle is nearly the same at all places in the simulation domain, whether in warm upÑows or cool downÑows. Thus, the temperature structure is
nearly in radiative-convective equilibrium everywhere on the solar surface.

3D: convection simulations to coronal atmospheres

Stein & Nordlund (1998), ApJ 499, 914
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Fig. 10. Probability density function (PDF) of the temperature as func-
tion of height at t = 3850 s (upper panel) and at t = 5440 s (lower
panel). Note the logarithmic temperature scale.

This is necessary in order to prevent the temperature from drop-
ping to very low values in areas of rapid expansion (e.g., caused
by the emergence of magnetic loops), see Leenaarts et al. (2011)
for a discussion. There are relatively few points in the simula-
tion box that are a↵ected by this artificial limit in temperature.
The bands of increased probability at temperatures of 10 kK and
20 kK are caused by the ionization of helium that is treated in
LTE in the current simulation, see Golding et al. (2014) for a dis-
cussion of non-equilibrium e↵ects of helium ionization. At the
end of the simulation run, at t = 5440 s, the distribution is rather
similar to the situation at t = 3850 s in the chromosphere, but the
corona has been further heated such that the regions with tem-
peratures below 300 kK above a height of 5 Mm are now gone,
with the exception of an extended helium ionization region at
10 kK.

As is obvious from Fig. 10, the temperature is not a single
valued function of height; there is a large spread of tempera-
tures at most heights. Figures 11–12 show the spatial distribu-
tion of the plasma at di↵erent temperatures. Each panel shows
the distribution of plasma at a given temperature with a trian-
gular shaped weighting centred on a given logarithmic tempera-
ture with a range of ±0.05 in the logarithm. Note that there is no
weighting with density (as would be appropriate for an optically
thin spectral line with a given formation temperature).

At a temperature of 6.3 kK we already see low lying loop
structures connecting magnetic field of opposite polarities. There
is a multitude of these low lying, short loops but much of the
plasma at that temperature is also distributed in structures that
are less loop-like. At 10 kK most of the lowest lying loops have

Fig. 11. Volume rendering of the temperature distribution at t = 5440 s
viewed from the top (left) and side (right). Bz at z = 0 with positive
(red) and negative (blue) polarity. The Moiré patterns are artefacts of
the volume visualisation.
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3D: solar to stellar modelsA&A 557, A26 (2013)

Fig. 8. Overview of the emergent (bolometric) intensity for a selection of stars, namely main-sequence (MS), turnoff (TO), K-giant and K-dwarf
(from left to right, respectively) at a given time instant. For each star, we show four metallicities [Fe/H] = 0.0,−1.0,−2.0 and −3.0 (from top to
bottom, respectively). To facilitate comparisons between the different metallicity of each star, the intensity scale and the horizontal geometrical
size of the metal-poor simulations are identical to [Fe/H] = 0.0, and the individual intensity contrasts [%] are indicated in each box.

with I being the (spatial) mean intensity and N the number of
data points (see Roudier & Muller 1986). We remark that the
shown ∆Irms are is temporal averages. It is essentially defined
as the relative standard deviation, hence it reflects the width of
the intensity distribution (see Fig. 9). This often measured value
is very suitable for quantifying the range of brightness fluctu-
ations due to granulation. The intensity contrast increases with
higher Teff and lower log g. For our solar simulation we get an
intensity contrast of 15%, which is close to the one found by
SN98 with 16% (see Col. 10 in Table C.1).

Towards higher Teff, we find that sbot, ∆s, and the verti-
cal velocity increase, as shown in Sects. 3.1.2 and 3.2.2. For

increasingly hotter stars, the top of the convective zone, ztop,cz,
penetrates higher and higher above the optical surface due to
larger vertical velocities (see Fig. 17). Additionally, at higher
Teff (higher sbot and ∆s), the overall temperatures and their fluc-
tuations also increase, implying that one observes increasingly
higher layers, since the dominant H−-opacity, hence the opti-
cal depth, depends sensitively on the temperature. Therefore, the
granulation pattern is enhanced at higher Teff, while on the con-
trary for lower Teff the granulation becomes less visible, since
ztop,cz recedes below the optical surface in the latter case (see
overview in Fig. 8). This phenomenon has been already de-
scribed by Nordlund & Dravins (1990) as naked granulation.
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Fig. 8. Overview of the emergent (bolometric) intensity for a selection of stars, namely main-sequence (MS), turnoff (TO), K-giant and K-dwarf
(from left to right, respectively) at a given time instant. For each star, we show four metallicities [Fe/H] = 0.0,−1.0,−2.0 and −3.0 (from top to
bottom, respectively). To facilitate comparisons between the different metallicity of each star, the intensity scale and the horizontal geometrical
size of the metal-poor simulations are identical to [Fe/H] = 0.0, and the individual intensity contrasts [%] are indicated in each box.

with I being the (spatial) mean intensity and N the number of
data points (see Roudier & Muller 1986). We remark that the
shown ∆Irms are is temporal averages. It is essentially defined
as the relative standard deviation, hence it reflects the width of
the intensity distribution (see Fig. 9). This often measured value
is very suitable for quantifying the range of brightness fluctu-
ations due to granulation. The intensity contrast increases with
higher Teff and lower log g. For our solar simulation we get an
intensity contrast of 15%, which is close to the one found by
SN98 with 16% (see Col. 10 in Table C.1).

Towards higher Teff, we find that sbot, ∆s, and the verti-
cal velocity increase, as shown in Sects. 3.1.2 and 3.2.2. For

increasingly hotter stars, the top of the convective zone, ztop,cz,
penetrates higher and higher above the optical surface due to
larger vertical velocities (see Fig. 17). Additionally, at higher
Teff (higher sbot and ∆s), the overall temperatures and their fluc-
tuations also increase, implying that one observes increasingly
higher layers, since the dominant H−-opacity, hence the opti-
cal depth, depends sensitively on the temperature. Therefore, the
granulation pattern is enhanced at higher Teff, while on the con-
trary for lower Teff the granulation becomes less visible, since
ztop,cz recedes below the optical surface in the latter case (see
overview in Fig. 8). This phenomenon has been already de-
scribed by Nordlund & Dravins (1990) as naked granulation.
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3D + Non-LTE: expensive to calculate radiation
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Hα spectra: full 3D vs 1D column-by-column
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1.4. The solar interior modeling crisis 9
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Figure 1.4 The solar chemical composition from hydrogen to thorium, latest revision from Asplund et al.
(2009). Abundances derived from the photosphere using a 3D model and spectral synthesis. Exceptions
made for the rare gases He, Ne, Ar, Kr and Xe, whose abundances were estimated indirectly. Element
abundances plotted the customary logarithmic scale: A(X) = log10(NX/NH) + 12, where NX is the number
density of a given element, and NH the number density of hydrogen.

the evolution of the Sun and predict its interior structure today. With the previous solar
metallicity of Grevesse & Sauval (1998) these models predict a solar interior structure
that is in very good agreement with the helioseismic inversion results. However, with
the lower solar abundances the agreement is much worse (Bahcall et al., 2005). The
reason for the change is that the lower metallicity implies a lower opacity. This a�ects
the structure of interior models at many levels, from the depth of the convection zone to
nuclear energy generation (Basu & Antia, 2008). Particularly relevant are the downward
revisions of species such as C, N and O, as they are important opacity contributors.
In Fig. 1.3 the e�ect of the new abundances on the solar interior models is shown. A
significant e�ort has been undertaken to try and reconcile the solar interior models with
the new solar abundances (see review of Basu & Antia, 2008), but at the moment there is
no solution to this problem. Hence, there is some skepticism to the revised abundances
from the solar interior modeling community, who perceive the problem as being with
the abundances from the 3D modeling.

Recently there has been another revision of the solar chemical composition, by Asplund
et al. (2009). They use an improved 3D model atmosphere (Asplund et al., in preparation;
Trampedach et al., in preparation) and the inferred metallicity is slightly higher than
the previous revision: Z = 0.0135. In Fig. 1.4 the individual abundances are shown

Solar chemical composition
10 Chapter 1. Introduction
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Figure 1.5 The solar oxygen abundance over the last 80 years, derived from photospheric lines. Top: the
values for the solar oxygen abundance in the logarithmic scale by its ratio to hydrogen, defined to be
at 1012. References for the measurements are, chronologically: Russell (1929); Goldberg & Aller (1943);
Unsöld (1948); Claas (1951); Goldberg et al. (1960); Lambert (1968, 1978); Grevesse et al. (1984); Anders &
Grevesse (1989); Grevesse & Noels (1993); Grevesse & Sauval (1998); Asplund et al. (2005a, 2009).

as a function of the atomic number. This revision goes some way in minimizing the
solar interior model problem (as seen in Fig. 1.3), but still leaves the question open.
Of relevance in the 3D abundance analyses is the oxygen abundance. Oxygen is the
most abundant element in the Sun after helium and its abundance determination is very
important for the C and N abundances, since they are commonly derived from their
ratios to oxygen. The 2005 revision of the solar oxygen abundance corresponded to a
32% decrease since the previous revision, in 1998. This can be seen in Fig. 1.5, where an
historical view of the solar oxygen abundances is shown.

The solar interior modeling crisis raises the issue of the 3D modeling not being suitable
for abundance analysis, and in particular for oxygen. It has prompted additional testing
of the 3D models, before one can fully trust its abundance estimates.

1.5. More testing is needed for the new models

The Sun o�ers an ideal test-bench for model atmospheres. Our ability to resolve its
surface means highly-detailed data can be obtained. While the solar 1D LTE models
have been tested against many diagnostics, this is not the case for the new generation
of models (3D LTE and 1D NLTE). The goal of this thesis is to fill in this gap and
systematically test the new models against several solar observational tests. In particular
for the 3D models. These tests will allow us to infer the models’ suitability to derive
chemical abundances in the Sun and in other stars.

Oxygen abundance over the years
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Fig. 15. Upper panel: observed disk-centre intensity bisectors for a sam-
ple of Fe i and Fe ii lines. Lower panel: di↵erences between predicted
and observed bisectors. The thick lines represent the average di↵erence
over all bisectors.

wavelength scale. Figure 14 shows the observed and predicted
Fe i and Fe ii line shifts relative to the adopted laboratory wave-
lengths of the lines. In line with previous findings, weaker lines
have a more pronounced convective blue-shift due to the larger
depths of formation where convection and the anti-correlations
between temperature and velocity are the largest; the cores of
stronger lines become progressively less blue-shifted such that
Fe lines with an equivalent width of ⇠10 pm have nearly vanish-
ing line shifts (Asplund et al. 2000a). The agreement between
predicted and observed line shifts is very satisfactory for the
3D hydrodynamical model as demonstrated in the lower panel
of Fig. 14: 30 ± 60 m s�1 for our Fe i lines and �50 ± 70 m s�1

for Fe ii. As also found by Asplund et al. (2000a) the stronger
Fe lines tend to have slightly underestimated convective blue-
shifts; Fe i lines with equivalent widths <6 pm have a mean dif-
ference of only 9 m s�1. Given the slightly deviating behaviour
of two of the weakest lines (Fe i 669.9 nm and Fe ii 562.7 nm)
one could suspect that they are more a↵ected by blends or erro-
neous laboratory wavelengths than the average line. The predic-
tions from the 3D MHD model have the correct qualitative be-
haviour but have systematically too little convective blue-shifts;
the mean di↵erence for Fe i is 100 ± 50 m s�1.

A comparison between observed and predicted line bisec-
tors tell a similar story as the line shifts. Solar disk-centre inten-
sity line profiles show a characteristic C-shaped bisector (weaker
lines tend to show only the upper part) with a typical veloc-
ity span of 300�600 m s�1 with the exact shape depending on
the line formation height and temperature/velocity sensitivity
(Asplund et al. 2000a). Figure 15 shows the di↵erences between

the predicted and observed bisectors for our sample of Fe lines;
ideally these di↵erences should manifest themselves as vertical
lines at zero velocity o↵set. The agreement is very satisfactory
for the 3D hydrodynamical model while the bisectors based on
the 3D MHD are not su�ciently blue-shifted, in line with the
line centre comparison.

8. Conclusions

Realistic solar atmospheres are of paramount importance for our
understanding of not just the Sun but also of observations of
other stars. The Sun provides an ideal test bench to test the phys-
ical ingredients of the models, which if successful can then be
applied to other stars with some confidence. A critical require-
ment for a realistic model is that its thermodynamical quantities
such as temperature, density and pressure match those of the real
Sun. In this work we have undertaken a systematic study of the
temperature structure of several solar models, using several key
observational tests: continuum CLV, absolute continuum fluxes,
wings of hydrogen lines, and also the intensity fluctuations over
the granulation and detailed line shapes and asymmetries.

In all diagnostics we find that the 3D model reproduces the
observations very well. This is especially true for the CLVs,
where its remarkable agreement surpasses even that of the semi-
empirical Holweger & Müller model, which was built to fit the
CLVs. The 3D model also performs very favourably against the
absolute continuum fluxes observations. For the hydrogen lines,
the 3D model predicts the wings of the H↵ line to be slightly
stronger than the observations, but on the other hand provides
a very good agreement for the other lines, and the best overall
agreement of all the models tested. In terms of the continuum
intensity fluctuations over the solar granulation, it is reassuring
to find that the 3D model reproduces the observed intensity dis-
tribution and �Irms well. The 3D model also predicts line shifts
and asymmetries that agree very well with observations, which
further supports its high degree of realism given the great sensi-
tivity of the exact line shapes on the atmospheric conditions and
line formation process.

In light of the work of Fabbian et al. (2010, 2012), we also
calculated the predictions of a simulation with an average verti-
cal magnetic field of 10 mT (the 3D MHD model). Regarding the
Fe line asymmetries, shifts, and abundances, the 3D MHD model
agrees slightly less well with observations, suggesting that either
the e↵ects of magnetic fields have been overestimated or that
it is missing some ingredient that counteracts the consequences
of the magnetic fields for the Fe line formation. Together with
the evidence from the other diagnostics, it implies that at this
stage there is no justification to prefer the solar abundances de-
rived from the current generation of 3D MHD solar models over
the 3D-based analysis of Asplund et al. (2009); our results sug-
gest that the 3D MHD Fe abundance corrections advocated by
Fabbian et al. (2010, 2012) are over-estimated.

The 1D theoretical models agree well with the observed
absolute continuum fluxes, especially the MARCS model.
However, both the MARCS and the PHOENIX models predic-
tions for the CLVs are consistently below the observations, both
in the visible and in the infrared, which we attribute to a too
steep temperature gradient. Such 1D hydrostatic models obvi-
ously cannot predict any line asymmetries or intensity contrasts.
We find that the small di↵erence in the temperature structure be-
tween the PHOENIX LTE and NLTE models does not translate
into any significant di↵erence in our comparison. Their results
are very similar. If anything, the NLTE model performs slightly
worse against the observational tests. This is likely to result from
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absence of stellar activity, which will vary from line to line, in a
manner that is robust against outlier points or noise. We zero
the RV time series per spectral line to account for this absolute
blueshift. We sort time series observations by RV value per
line, and subtract the average of the middle two quartiles, as
shown in Figure 1. In selecting this range, we assume that low-
activity days will fall close to the median value; by subtracting
the average value for the low-activity days, we aim to identify
the hypothetical no-activity point for each line while avoiding
bias in our zero-point due to outliers.

2.3. Finding RVs from Sublists

Following the procedure of M17, we identify line sublists by
relative depth. We take variance-weighted means of the entire
line list (s0), lines with relative depth .5–.95 (s1), and lines with

relative depth .05–.5 (s2), to extract RV0, RV1, and RV2,
respectively. The RV errors are computed from fit error bars on
the line-center parameter, which incorporate propagated shot
noise from the raw spectra. Features of these time series are
listed in Table 2, while the time series themselves are given in
Table 3.
To validate our extracted time series, we compare to the

HARPS-N Data Reduction System (DRS) RVs (Baranne et al.
1996; Sosnowska et al. 2012). Figure 3 shows a Lomb–Scargle
periodogram comparison of the two time series (Zechmeister &

Figure 1. Left: illustration of boundaries of observed points (black) included in fits for Gaussian (gray curve) and polynomial (dark blue curve) fits for a representative
line (at 6173 Å). Top right: demonstration of the zeroing procedure for the same 6173 Å line—the average of the middle two quartiles of RV values per line is
subtracted off. Bottom right: zeroed RV time series for 6173 Å line (gray), compared to average time series for all lines, RV0 (red).

Table 1
First 10 Iron Lines Used in This Analysis

Wavelength (Å)

3922.91
3946.99
3948.10
3975.21
3995.98
4000.25
4000.46
4001.66
4022.74
4047.30
M

Note.An extended line list containing all 765 spectral lines used in our
analysis is available online at doi:10.5281/zenodo.3541149.

Figure 2. Third signature of stellar granulation trend demonstrated in Fe I list
extracted from NIST database. Lines are binned in 0.1 relative depth bins:
black dots show the average value per bin, and error bars show standard
deviation per bin. The red curve shows the polynomial of best fit from Reiners
et al. (2016).
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Fig. 9. Fe  bisectors in the F5 IV−V star Procyon, measured with suc-
cessively higher spectral resolutions. Top: 81 lines from UVES Paranal
spectra (Bagnulo et al. 2003; R = 80 000); middle: 118 lines from the
Procyon atlas by Griffin & Griffin (1979; R = 160 000); bottom: 37 lines
from McDonald, with the highest resolution (R = 200 000) but smallest
spectral coverage (Allende Prieto et al. 1999). The horizontal axis only
shows relative lineshifts.

shapes in full requires resolutions comparable to those in solar
atlases, by far not realized here. The lines entering Fig. 9 are
identified in the electronic Table 2.

5.1.1. Blueward hook of the bisectors

Highest fidelity spectra start to reveal bisector shapes beyond
their basic curvature and shift, e.g. the McDonald data in Fig. 9
suggest a sudden change in bisector behavior near continuum
intensity, the curve taking a sudden turn to the blue, i.e. a “blue-
ward hook”. A similar signature was first seen in Procyon by
Dravins (1987b), in the strongest among a small number of se-
lected very clean lines, observed at resolutions R ≈ 200 000.

Such a blueward hook can already be reproduced by sim-
ple models with a multi-stream summation of wavelength-
shifted line components (Dravins 1990; his Figs. 6 and 7), and
be traced to the extended Lorentzian wings of the stronger,

saturated, and blueshifted line components. Their contribution
in one flank of the spatially averaged line also affects the inten-
sity in the opposite flank, in contrast to Gaussian-like compo-
nents, whose absorption disappears over a short wavelength dis-
tance. The effect is especially noticeable close to the continuum,
where a small blueshifted intensity depression in the outer line
flank may dominate the bisector, causing a sudden blueward
hook. Hydrodynamic modeling of Procyon spectra by Dravins &
Nordlund (1990b) did not reveal this signature because the need
to extend calculations to almost the spectral continuum was not
understood yet at that time. The mechanisms were clarified in the
modeling by Allende Prieto et al. (2002a) who found all strong
Fe lines to show such a blueward hook, while not present in
weaker ones. The steeper temperature gradients in the rising and
blueshifted granules produce stronger absorption lines, which
therefore tend to first saturate and develop Lorentzian damping
wings in those spatial locations (rather than in the redshifted and
sinking intergranular lanes).

Given that this signature is visible in different datasets and is
also theoretically understood, it may be accepted as real. Can it
also be seen in other F-type stars?

5.2. Fe II in other F-type stars

F-type stars most often have much higher rotational velocities
than the solar ≈2 km s−1 or the ≈3 km s−1 deduced for Procyon
(Allende Prieto et al. 2002a), generating line broadening, blend-
ing, and ensuing difficulties in bisector measurements.

Within the UVES Paranal survey, the sharpest-lined star of
a spectral type close to that of Procyon (F5 IV−V) seems to be
θ Scl (HD 739, HR 35) with spectral classifications in the liter-
ature going as early as F3, with the most recent F5 V. Its rota-
tional velocity does not appear to have been measured, but a vi-
sual comparison of its line profiles to those of Procyon suggests
a very comparable value of V sin i. Edvardsson et al. (1993) de-
duced a metallicity [Fe/H] = −0.10 (comparable to the Procyon
value of −0.05; Allende Prieto et al. 2002a), and the surface
gravity log g [cgs] = 4.26, higher by ≈0.3 dex than for Procyon’s
luminosity class IV−V, placing this star on the main sequence.

The Fe  lines were examined in θ Scl, analogous to the case
for Procyon, but here more lines could be identified, retained,
and measured close to the continuum. The individual bisectors
in Fig. 10 have a considerable spread, but their average does dis-
play a sudden “blueward hook” close to the continuum, not un-
like Procyon. The limited spectral resolution hides signatures of
bisector curvature for intensity levels below some 80% (where
the number of spectral resolution elements across the relevant
line-width is too low), but does not constrain the wavelength
position of the bisector close to the continuum, where the line
wings are broader and the number of resolution elements thus is
correspondingly greater. The lines selected for Fig. 10 were in
the electronic Table 2.

Accepting these F-star signatures as real demonstrates how
different degrees of line saturation across stellar surface inho-
mogeneities can be detected in integrated starlight, also permit-
ting tests of rather detailed properties of hydrodynamic models.
However, we are not far from the limits in extracting spectral-
line signatures from spectroscopy of integrated starlight. To de-
tect these signatures requires stars with both astrophysically be-
nign spectra (very little rotational broadening), high-resolution
instrumentation, very low-noise recordings, followed by the av-
eraging over some hundred spectral lines.

Dravins (2008), A&A, 492, 199
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Fig. 15. Upper panel: observed disk-centre intensity bisectors for a sam-
ple of Fe i and Fe ii lines. Lower panel: di↵erences between predicted
and observed bisectors. The thick lines represent the average di↵erence
over all bisectors.

wavelength scale. Figure 14 shows the observed and predicted
Fe i and Fe ii line shifts relative to the adopted laboratory wave-
lengths of the lines. In line with previous findings, weaker lines
have a more pronounced convective blue-shift due to the larger
depths of formation where convection and the anti-correlations
between temperature and velocity are the largest; the cores of
stronger lines become progressively less blue-shifted such that
Fe lines with an equivalent width of ⇠10 pm have nearly vanish-
ing line shifts (Asplund et al. 2000a). The agreement between
predicted and observed line shifts is very satisfactory for the
3D hydrodynamical model as demonstrated in the lower panel
of Fig. 14: 30 ± 60 m s�1 for our Fe i lines and �50 ± 70 m s�1

for Fe ii. As also found by Asplund et al. (2000a) the stronger
Fe lines tend to have slightly underestimated convective blue-
shifts; Fe i lines with equivalent widths <6 pm have a mean dif-
ference of only 9 m s�1. Given the slightly deviating behaviour
of two of the weakest lines (Fe i 669.9 nm and Fe ii 562.7 nm)
one could suspect that they are more a↵ected by blends or erro-
neous laboratory wavelengths than the average line. The predic-
tions from the 3D MHD model have the correct qualitative be-
haviour but have systematically too little convective blue-shifts;
the mean di↵erence for Fe i is 100 ± 50 m s�1.

A comparison between observed and predicted line bisec-
tors tell a similar story as the line shifts. Solar disk-centre inten-
sity line profiles show a characteristic C-shaped bisector (weaker
lines tend to show only the upper part) with a typical veloc-
ity span of 300�600 m s�1 with the exact shape depending on
the line formation height and temperature/velocity sensitivity
(Asplund et al. 2000a). Figure 15 shows the di↵erences between

the predicted and observed bisectors for our sample of Fe lines;
ideally these di↵erences should manifest themselves as vertical
lines at zero velocity o↵set. The agreement is very satisfactory
for the 3D hydrodynamical model while the bisectors based on
the 3D MHD are not su�ciently blue-shifted, in line with the
line centre comparison.

8. Conclusions

Realistic solar atmospheres are of paramount importance for our
understanding of not just the Sun but also of observations of
other stars. The Sun provides an ideal test bench to test the phys-
ical ingredients of the models, which if successful can then be
applied to other stars with some confidence. A critical require-
ment for a realistic model is that its thermodynamical quantities
such as temperature, density and pressure match those of the real
Sun. In this work we have undertaken a systematic study of the
temperature structure of several solar models, using several key
observational tests: continuum CLV, absolute continuum fluxes,
wings of hydrogen lines, and also the intensity fluctuations over
the granulation and detailed line shapes and asymmetries.

In all diagnostics we find that the 3D model reproduces the
observations very well. This is especially true for the CLVs,
where its remarkable agreement surpasses even that of the semi-
empirical Holweger & Müller model, which was built to fit the
CLVs. The 3D model also performs very favourably against the
absolute continuum fluxes observations. For the hydrogen lines,
the 3D model predicts the wings of the H↵ line to be slightly
stronger than the observations, but on the other hand provides
a very good agreement for the other lines, and the best overall
agreement of all the models tested. In terms of the continuum
intensity fluctuations over the solar granulation, it is reassuring
to find that the 3D model reproduces the observed intensity dis-
tribution and �Irms well. The 3D model also predicts line shifts
and asymmetries that agree very well with observations, which
further supports its high degree of realism given the great sensi-
tivity of the exact line shapes on the atmospheric conditions and
line formation process.

In light of the work of Fabbian et al. (2010, 2012), we also
calculated the predictions of a simulation with an average verti-
cal magnetic field of 10 mT (the 3D MHD model). Regarding the
Fe line asymmetries, shifts, and abundances, the 3D MHD model
agrees slightly less well with observations, suggesting that either
the e↵ects of magnetic fields have been overestimated or that
it is missing some ingredient that counteracts the consequences
of the magnetic fields for the Fe line formation. Together with
the evidence from the other diagnostics, it implies that at this
stage there is no justification to prefer the solar abundances de-
rived from the current generation of 3D MHD solar models over
the 3D-based analysis of Asplund et al. (2009); our results sug-
gest that the 3D MHD Fe abundance corrections advocated by
Fabbian et al. (2010, 2012) are over-estimated.

The 1D theoretical models agree well with the observed
absolute continuum fluxes, especially the MARCS model.
However, both the MARCS and the PHOENIX models predic-
tions for the CLVs are consistently below the observations, both
in the visible and in the infrared, which we attribute to a too
steep temperature gradient. Such 1D hydrostatic models obvi-
ously cannot predict any line asymmetries or intensity contrasts.
We find that the small di↵erence in the temperature structure be-
tween the PHOENIX LTE and NLTE models does not translate
into any significant di↵erence in our comparison. Their results
are very similar. If anything, the NLTE model performs slightly
worse against the observational tests. This is likely to result from
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Fig. 2. Stokes profiles at the five representative spatial points indicated in Fig. 1. The profiles computed in LTE, 1D NLTE, and 3D NLTE are
indicated in purple, black, and orange, respectively. In the first column, the di↵erences in equivalent widths and the residual intensities with respect
to the LTE profiles are indicated for the two lines. They are computed using Eq. (3). For better visibility of the di↵erences between the profiles,
we again show the 1D NLTE and 3D NLTE profiles separately in Fig. 3.

calculations on di↵erent but overlapping areas in the simulation
box. Relative di↵erences between the intensities and equivalent
width (EW) of the profiles in this overlapping area were com-
pared. It was found that the e↵ect of the non-periodic bound-
ary is restricted to the pixels near the boundary of a computed
domain. By removing the 32 rows or lines of pixels nearest to
each boundary, we ensured that the e↵ect of the boundary on the
profiles was smaller than 1% everywhere. More details of this
procedure are described in Holzreuter & Solanki (in prep.). The

new position 1 lies closer to the edge of the granule, and posi-
tion 3 lies within the same intergranular lane. Position 5 was also
shifted to a region that shows stronger 3D e↵ects, but it is still
within the same magnetic structure. All the original and shifted
spatial positions are marked in Fig. 1.

In Fig. 2 we compare the Stokes profiles from the LTE, 1D
NLTE, and 3D NLTE runs. For clarity, we separately compare
the 1D NLTE and 3D NLTE profiles in Fig. 3. The di↵erences
in their equivalent widths and residual intensities are computed
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Fig. 2. Stokes profiles at the five representative spatial points indicated in Fig. 1. The profiles computed in LTE, 1D NLTE, and 3D NLTE are
indicated in purple, black, and orange, respectively. In the first column, the di↵erences in equivalent widths and the residual intensities with respect
to the LTE profiles are indicated for the two lines. They are computed using Eq. (3). For better visibility of the di↵erences between the profiles,
we again show the 1D NLTE and 3D NLTE profiles separately in Fig. 3.

calculations on di↵erent but overlapping areas in the simulation
box. Relative di↵erences between the intensities and equivalent
width (EW) of the profiles in this overlapping area were com-
pared. It was found that the e↵ect of the non-periodic bound-
ary is restricted to the pixels near the boundary of a computed
domain. By removing the 32 rows or lines of pixels nearest to
each boundary, we ensured that the e↵ect of the boundary on the
profiles was smaller than 1% everywhere. More details of this
procedure are described in Holzreuter & Solanki (in prep.). The

new position 1 lies closer to the edge of the granule, and posi-
tion 3 lies within the same intergranular lane. Position 5 was also
shifted to a region that shows stronger 3D e↵ects, but it is still
within the same magnetic structure. All the original and shifted
spatial positions are marked in Fig. 1.

In Fig. 2 we compare the Stokes profiles from the LTE, 1D
NLTE, and 3D NLTE runs. For clarity, we separately compare
the 1D NLTE and 3D NLTE profiles in Fig. 3. The di↵erences
in their equivalent widths and residual intensities are computed
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Fig. 2. Stokes profiles at the five representative spatial points indicated in Fig. 1. The profiles computed in LTE, 1D NLTE, and 3D NLTE are
indicated in purple, black, and orange, respectively. In the first column, the di↵erences in equivalent widths and the residual intensities with respect
to the LTE profiles are indicated for the two lines. They are computed using Eq. (3). For better visibility of the di↵erences between the profiles,
we again show the 1D NLTE and 3D NLTE profiles separately in Fig. 3.

calculations on di↵erent but overlapping areas in the simulation
box. Relative di↵erences between the intensities and equivalent
width (EW) of the profiles in this overlapping area were com-
pared. It was found that the e↵ect of the non-periodic bound-
ary is restricted to the pixels near the boundary of a computed
domain. By removing the 32 rows or lines of pixels nearest to
each boundary, we ensured that the e↵ect of the boundary on the
profiles was smaller than 1% everywhere. More details of this
procedure are described in Holzreuter & Solanki (in prep.). The

new position 1 lies closer to the edge of the granule, and posi-
tion 3 lies within the same intergranular lane. Position 5 was also
shifted to a region that shows stronger 3D e↵ects, but it is still
within the same magnetic structure. All the original and shifted
spatial positions are marked in Fig. 1.

In Fig. 2 we compare the Stokes profiles from the LTE, 1D
NLTE, and 3D NLTE runs. For clarity, we separately compare
the 1D NLTE and 3D NLTE profiles in Fig. 3. The di↵erences
in their equivalent widths and residual intensities are computed
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Fig. 2. Stokes profiles at the five representative spatial points indicated in Fig. 1. The profiles computed in LTE, 1D NLTE, and 3D NLTE are
indicated in purple, black, and orange, respectively. In the first column, the di↵erences in equivalent widths and the residual intensities with respect
to the LTE profiles are indicated for the two lines. They are computed using Eq. (3). For better visibility of the di↵erences between the profiles,
we again show the 1D NLTE and 3D NLTE profiles separately in Fig. 3.

calculations on di↵erent but overlapping areas in the simulation
box. Relative di↵erences between the intensities and equivalent
width (EW) of the profiles in this overlapping area were com-
pared. It was found that the e↵ect of the non-periodic bound-
ary is restricted to the pixels near the boundary of a computed
domain. By removing the 32 rows or lines of pixels nearest to
each boundary, we ensured that the e↵ect of the boundary on the
profiles was smaller than 1% everywhere. More details of this
procedure are described in Holzreuter & Solanki (in prep.). The

new position 1 lies closer to the edge of the granule, and posi-
tion 3 lies within the same intergranular lane. Position 5 was also
shifted to a region that shows stronger 3D e↵ects, but it is still
within the same magnetic structure. All the original and shifted
spatial positions are marked in Fig. 1.

In Fig. 2 we compare the Stokes profiles from the LTE, 1D
NLTE, and 3D NLTE runs. For clarity, we separately compare
the 1D NLTE and 3D NLTE profiles in Fig. 3. The di↵erences
in their equivalent widths and residual intensities are computed
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Fig. 2. Stokes profiles at the five representative spatial points indicated in Fig. 1. The profiles computed in LTE, 1D NLTE, and 3D NLTE are
indicated in purple, black, and orange, respectively. In the first column, the di↵erences in equivalent widths and the residual intensities with respect
to the LTE profiles are indicated for the two lines. They are computed using Eq. (3). For better visibility of the di↵erences between the profiles,
we again show the 1D NLTE and 3D NLTE profiles separately in Fig. 3.

calculations on di↵erent but overlapping areas in the simulation
box. Relative di↵erences between the intensities and equivalent
width (EW) of the profiles in this overlapping area were com-
pared. It was found that the e↵ect of the non-periodic bound-
ary is restricted to the pixels near the boundary of a computed
domain. By removing the 32 rows or lines of pixels nearest to
each boundary, we ensured that the e↵ect of the boundary on the
profiles was smaller than 1% everywhere. More details of this
procedure are described in Holzreuter & Solanki (in prep.). The

new position 1 lies closer to the edge of the granule, and posi-
tion 3 lies within the same intergranular lane. Position 5 was also
shifted to a region that shows stronger 3D e↵ects, but it is still
within the same magnetic structure. All the original and shifted
spatial positions are marked in Fig. 1.

In Fig. 2 we compare the Stokes profiles from the LTE, 1D
NLTE, and 3D NLTE runs. For clarity, we separately compare
the 1D NLTE and 3D NLTE profiles in Fig. 3. The di↵erences
in their equivalent widths and residual intensities are computed
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Fig. 15. Maximum formation heights, max z(⌧⌫ = 1), of the Ca II K (blue), Ca II H (white), infrared Ca II triplet 8542 Å (black solid), and Mg II h
(gray) lines in Model 2, sliced vertically along the main diagonal, where max z(⌧⌫ = 1) is taken over all wavelength positions of the respective
spectral line profile. The zero point is defined as the average height where the optical depth at 5000 Å is unity. Upper panel: gas temperature is
indicated. Middle panel: mass density is shown. Lower panel: magnetic field strength is shown. The plasma � parameter is less than unity above
and bigger than unity below the dotted line.

6.3. Diagnostic properties of the H and K lines

Following Leenaarts et al. (2013b) we investigated what kind
of diagnostic the H and K lines can provide for the chromo-
sphere. We studied how intensities, wavelength positions, and
other derived properties of the vertically emergent (µ = 1.00)
synthetic profile features are related to the physical properties of
the individual columns of the 3D model atmosphere at the corre-
sponding heights. We present results for the K line only as they
are similar for the H line.

We use the following notations. The speed of light is c. The
vertical velocity is 3Z(z) and it depends on height z. The central
wavelength of the K line is �0. For K2V, K3, and K2R, we denote
their wavelengths �(K2V), �(K3), and �(K2R). The same notation
in parentheses is used for the emergent intensity I and the corre-
sponding brightness temperature Tb. The formation height of K3
is z3 ⌘ z(K3). Similarly, the averaged formation height of K2 is

z2 =
1
2
⇥
z2V + z2R

⇤ ⌘ 1
2
⇥
z(K2V) + z(K2R)

⇤
. (4)

The Doppler shift of K3 is

33 = c
��3

�0
⌘ c
�0 � �(K3)
�0

. (5)

The averaged Doppler shift of K2 is

32 = c
�0 � 1

2
⇥
�(K2V) + �(K2R)

⇤

�0
. (6)

The peak-to-peak distance or the peak separation is

�32 = c
��2

�0
⌘ c
�(K2R) � �(K2V)

�0
. (7)

The averaged vertical velocity at peaks is

h3Zi2 = 1
2
⇥
3Z(z2V) + 3Z(z2R)

⇤
. (8)

The maximum amplitude of the vertical velocity

�3Z = max
z2zz3

vZ(z) � min
z2zz3

vZ(z) (9)

is measured between z2 and z3, that is, the range of heights where
the central part of the profile between the emission peaks is
formed. In the same range of heights we define the mean vertical
velocity

h3Zi2�3 =
1

z3 � z2

Z
z3

z2

3Z(⇣) d⇣. (10)

The peak asymmetry A is the same as in Eq. (2).

6.3.1. Velocities

Leenaarts et al. (2013b) showed that the Mg II h and k lines are
good for tracing the line-of-sight velocities in the chromosphere
through the h3/k3 or the h2/k2 features. We test whether the same
is true for the Ca II H and K lines.
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Fig. 3. CLVs in the continuum intensity. Top panels: comparison with the visible/infrared observations of Neckel & Labs (1994). Bottom panels:
comparison with the near-infrared observations of Pierce et al. (1977), for wavelengths between 1158.35�2401.8 nm.
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Fig. 4. Normalised di↵erences between observations and models in
the CLV, averaged over wavelength as a function of µ (see text).
Comparison with Neckel & Labs (1994) for 400 < � < 1099 nm.

shallower temperature gradient (Fig. 1) in the MHD model. The
3D MHD model performs slightly worse than the Holweger &
Müller model.

The agreement with the theoretical 1D models is not as
good. It is interesting to note in Fig. 4 that LTE models of
MARCS and PHOENIX have the same trend with µ, although
the PHOENIX model performs slightly better. The results for

the PHOENIX NLTE model depart only slightly from the LTE
model results. The NLTE cooling of the outer layers seen in
Fig. 1 causes a slightly steeper temperature gradient, which leads
to a worse agreement with the observed CLVs. The overall struc-
ture and dependence with µ remains essentially the same for both
PHOENIX models as well as for the MARCS model, as seen in
Figs. 3 and 4, due to the similarity in T (⌧) for �2 < log ⌧ < 0,
the layers largely tested with continuum CLV.

Compared to other models, the di↵erences between the 3D
and h3Di models are small, meaning that the mean temper-
ature gradient is the main driver of the continuum CLV be-
haviour. Nevertheless, the 3D model predictions agree even
closer with the observations, confirming the results of Koesterke
et al. (2008), although we find a smaller “3D�h3Di” di↵er-
ence. Looking at Fig. 3, the h3Di model lies slightly below the
3D model, in other words the e↵ect of the atmospheric inho-
mogeneities increases I(µ)/I(µ = 1). One would therefore ex-
pect that if spatial and temporal inhomogeneities were added to
the Holweger & Müller model, its predictions would lie further
above the observations. This indicates that the temperature gra-
dient of the Holweger & Müller model is too shallow compared
to the Sun.

We also compare with the old 3D model. While this is a re-
alistic model that reproduces the observed line shifts and shapes
(Asplund et al. 2000a), its steeper temperature gradient has a no-
ticeable e↵ect on the continuum CLV. Its predictions are worse
when compared to the observations (but still better than the
1D models). We do not use this old model in the other obser-
vational tests.
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Fig. 5. Same as Fig. 4 but for the 1D models and only for the
O  777.41 nm line.

following wavelength ranges: 777.175–777.24 nm, 777.36–
777.46 nm and 777.50–777.565 nm.

Corresponding results for the 1D models are given in Fig. 5,
but only for the O  777.41 nm line; the other lines behave
similarly. They indicate a mixed scenario. On one hand, the
Holweger-Müller model gives a similar result to the 3D model:
the best agreement is with S H = 1. But for the model, no
value of S H can agree reasonably with the observations, both in
equivalent width and line profile fitting.

In Fig. 6 the 3D model predicted line profiles for disk-centre
(adjusted in abundance) and the limb (using the disk-centre
abundance) are shown for LTE and S H = 0.01, 0.3, and 1. It can
be seen that LTE performs very poorly at the limb (too weak),
so that S H = 0.01 does not fare much better (too strong) and that
S H = 1 agrees better.

One can also see that the LTE profiles seem to fit the obser-
vations better at disk-centre. The disk-centre profiles for S H = 1
are narrower and deeper than the observed. At the limb, in terms
of shape alone, S H = 1 profiles have a much better fit. The
S H that best describes the centre-to-limb variation of the line
strengths does not seem to be the best at describing the shapes
of line profiles at disk-centre. This same effect is more obvious
when looking at the granulation variation of the FWHM at disk-
centre (Paper I). It may very well be connected with the find-
ing of Paper I that no single S H agrees well with the observed
equivalent widths for both granular and intergranular regions.
The reason for these discrepancies is not clear yet.

To better quantify the agreement with the observations of
different S H, a χ2 minimization was made with the equiva-
lent widths, simultaneously for the three lines and for the five
µ values. For each value of S H, we varied the oxygen abun-
dance and found the value that minimizes the squared difference
between observed and predicted equivalent widths, weigthed
by the observational error bars. The reduced χ2 is defined as
1/N ·∑ (Wobs −Wmodel)2 /σ2, where N is the number of degrees
of freedom (in this case, N = 15 − 1). The χ2 values, as a func-
tion of S H are shown in Fig. 7. Comparing for all the S H, we
identify the value that agrees better, using a parabolic fit to the
lower χ2 values.

Table 3. Derived disk-centre oxygen abundances (log εO) from from the
3D model.

O  line [nm] S H SST/TRIPPEL FTS atlas
777.19 0.01 8.50 8.52

0.1 8.53 8.55
0.3 8.58 8.60
0.5 8.61 8.63
1 8.66 8.68
1.5 8.73 8.75
3 8.76 8.77
10 8.82 8.84
LTE 8.87 8.88

777.41 0.01 8.54 8.55
0.1 8.56 8.57
0.3 8.60 8.61
0.5 8.63 8.64
1 8.69 8.69
1.5 8.74 8.75
3 8.76 8.77
10 8.82 8.83
LTE 8.85 8.86

777.53 0.01 8.58 8.58
0.1 8.60 8.60
0.3 8.63 8.64
0.5 8.65 8.66
1 8.69 8.70
1.5 8.74 8.75
3 8.75 8.76
10 8.80 8.81
LTE 8.83 8.83

For the 3D model, we find the χ2 minimum to be at
S H ≈ 0.85. We used this value to derive the oxygen abundance
from these lines. Averaging over the three lines we obtain an
oxygen abundance of log εO = 8.68 for the 3D model. By re-
peating the procedure for the 1D Holweger-Müller model we
also obtain S H ≈ 0.85, deriving an abundance of 8.66. Although
with the 1D  model no S H reproduces the observations,
for comparison we derive an abundance of 8.61 using S H = 0.85.

4.1.3. Comparison with previous work

At first glance our findings are consistent with the S H = 1 es-
timated by AAF04. But these two findings cannot be directly
compared, as we use a different 3D model. To compare our
methods and observations with AAF04, we repeated our anal-
ysis for the same 3D model they use. The best-fitting value is
then S H ≈ 0.3, which is close to the observations as S H = 1
with the new 3D model. Between S H = 0 and S H = 1 (the
two values tested by AAF04) we find that the latter agrees bet-
ter with the observations, consistent with the findings of AAF04.
But the best fit of S H ≈ 0.3 indicates a model dependence in this
derivation, also seen for the 1D models. Interestingly, although
the best-fitting S H varies for the two 3D models, the abundances
derived from profile fits with the best choice S H are almost un-
changed between the two models (<∼0.01 dex).

4.1.4. Effect of blends and electron collisions on the inferred
SH and abundances

There are a few weak CN and C2 lines in the 777 nm region. The
VALD database also lists some weak atomic lines. Most of these
lines are very weak and their effect on the O  lines negligible. At
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Fig. 4. Top panels: equivalent width vs. µ for the three triplet lines, using 3D LTE and NLTE with different S H coefficients for hydrogen collisions.
The oxygen abundance was adjusted so that the models have the same equivalent width as the observations at disk-centre. Bottom panels: difference
in fitted abundance from disk-centre to a given position in µ. Synthetic profiles were fitted against the observations at each µ, and the figures show
how much the fitted abundance varies from the fitted value at disk-centre.

radiation field weaker than Planckian in the line formation re-
gion (e.g. Eriksson & Toft 1979; Kiselman 1993).

Aside from the increased computational expense of comput-
ing the 3D NLTE radiative transfer for these lines, departures
from LTE introduce additional uncertainties stemming from the
input physics, in particular photo-ionization rates and collisional
cross-sections with electrons and H . The latter, as noted in
Sect. 1, are often taken from the classical estimates and scaled
by an S H factor. For the O  777 nm lines, a scaling factor for the
H  collisions was tried by Kiselman (1993) to reconcile different
1D models with observed centre-to-limb variation of the equiva-
lent widths. Further investigation of the 3D and NLTE effects on
these lines is provided by Kiselman & Nordlund (1995), using an
early 3D model and showing the feasibility of the line centre-to-
limb variations to probe for the atomic parameters (i.e., S H). This
suggestion was followed by Allende Prieto et al. (2004, hereafter
AAF04), who used the centre-to-limb variation of the O  777 nm
lines and a 3D model to empirically deduce that S H = 1 was
preferable to S H = 0.

Our work differs from AAF04 in that we use a different set
of observations and 3D model, a greater range of S H values, a
more up-to-date atom, and more detailed radiative transfer for
the NLTE calculations (more simulation snapshots included in
the full 3D NLTE, more angles used in 3).

4.1.2. Comparison with observations

Our goal is to find the S H that best describes the centre-to-limb
variation of the line strength. For this purpose we have two di-
agnostics: equivalent widths and line-profile fitting. Measuring

the variation of line strengths by profile fitting has the advan-
tage of being less sensitive to systematics (e.g. blends, noise)
than the equivalent widths. But when the shape of the line pro-
files does not match the observations, the line profiles adjusted
in abundance will have a slightly different equivalent width than
the observations. We present the results using both diagnostics,
and they both suggest a very similar result.

To fit the line profiles, we vary two parameters: oxygen abun-
dance and wavelength shift (of the observations). The latter is
necessary because of the uncertainty in the wavelength calibra-
tion. For the 1D models, another free parameter was allowed in
the fit: macroturbulence. Ideally it should not be allowed to vary
freely, but instead extracted from nearby lines. The scarcity of
lines in our observed window around 777 nm makes this task
difficult; in our observed window, there is only one other line, a
strong Fe  line. Deriving the macroturbulence from only one line
would probably introduce a similar or larger error as allowing it
to be a free parameter in the fit for the O  777 nm lines.

The results for profile fitting and equivalent width for the 3D
model are given in Fig. 4. For the equivalent widths, the oxygen
abundance was adjusted for each line so that it matched the ob-
servations at disk-centre. The same abundance was then used for
all the other values of µ. Both diagnostics indicate that S H = 1
agrees most closely with the observations, with a small varia-
tion from line to line. It is shown with a high confidence level
that LTE line formation is not a valid approximation for these
lines. In Table 3 we list the derived abundances from fitting the
disk-centre line profiles, using 3D NLTE radiative transfer for
different values of S H both for our observations and the FTS at-
las of Brault & Neckel (1987). Line profiles were fitted in the

3D NLTE
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MULTI3D: A Domain-Decomposed 3D Radiative Transfer
Code
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Abstract. We present MULTI3D, a 3D radiative transfer code currently
under development. It is optimized for computing NLTE problems based on
(radiation-)MHD models of stellar atmospheres. MULTI3D is based on MULTI
and includes most of the physics present in that code. MULTI3D was first
written as a serial code by Botnen (1997) and has recently been upgraded to an
MPI-parallelized, domain-decomposed version. The code has so far successfully
been run on up to 64 processors, solving the NLTE radiative transfer for a six-
level Ca II atom with 400 frequency points in an atmosphere of 256 x 128 x 108
grid points.

1. The Code

In recent years, it has become possible to perform three-dimensional radiation-
magneto-hydro-dynamic simulations of the solar chromosphere. These sim-
ulations give quantities such as temperatures, densities, and magnetic field
strengths as output. These can, however, not directly be compared to observa-
tions. First, one has to translate the model parameters to emergent intensities
in the spectral lines of interest.

Chromospheric spectral lines form in general in NLTE and require compu-
tation of the three-dimensional radiation field. Because of the large number of
spatial, angle and frequency points this is a computationally intensive task.

We present MULTI3D, a domain-decomposed MPI-parallelized code that
efficiently solves the NLTE radiative transfer problem in 3D Cartesian geom-
etry. It is based on the 1D code MULTI (Carlsson 1986) and a serial version
of MULTI3D developed by Botnen (1997). The code employs the complete lin-
earization method of Scharmer and Carlsson (1985) to solve NLTE problems
in 3D geometry. Scattering in lines is treated in complete redistribution while
background scattering is coherent. Overlapping transitions are not allowed.
Collisional-radiative switching and convergence acceleration are implemented.

1.1. Short Characteristics

The code employs a 3D short characteristics solver for the radiation. It uses
second-order Bezier interpolation for the source function, ensuring a positive
source function along the characteristics. The radiation is not propagated
throughout the whole computational domain per iteration. Instead, it is prop-
agated over a small (typically 2) number of sub-domains per iteration. This
means the average radiation field at a given point lags behind several iterations,
but will converge to the correct solution when the corrections to the populations
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ABSTRACT

The interpretation of the intensity and polarization of the spectral line radiation produced in the atmosphere of the Sun and of other
stars requires solving a radiative transfer problem that can be very complex, especially when the main interest lies in modeling the
spectral line polarization produced by scattering processes and the Hanle and Zeeman e↵ects. One of the di�culties is that the plasma
of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem
of the generation and transfer of polarized radiation in realistic three-dimensional (3D) stellar atmospheric models. Here we present
PORTA, an e�cient multilevel radiative transfer code we have developed for the simulation of the spectral line polarization caused
by scattering processes and the Hanle and Zeeman e↵ects in 3D models of stellar atmospheres. The numerical method of solution
is based on the non-linear multigrid iterative method and on a novel short-characteristics formal solver of the Stokes-vector transfer
equation which uses monotonic Bézier interpolation. Therefore, with PORTA the computing time needed to obtain at each spatial
grid point the self-consistent values of the atomic density matrix (which quantifies the excitation state of the atomic system) scales
linearly with the total number of grid points. Another crucial feature of PORTA is its parallelization strategy, which allows us to speed
up the numerical solution of complicated 3D problems by several orders of magnitude with respect to sequential radiative transfer
approaches, given its excellent linear scaling with the number of available processors. The PORTA code can also be conveniently
applied to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems.

Key words. line: formation – magnetic fields – methods: numerical – polarization – radiative transfer

1. Introduction

This paper describes a computer program we have developed
for solving, in three-dimensional (3D) models of stellar atmo-
spheres, the problem of the generation and transfer of spectral
line polarization taking into account anisotropic radiation pump-
ing and the Hanle and Zeeman e↵ects in multilevel systems.
The numerical method of solution is based on a highly con-
vergent iterative method, whose convergence rate is insensitive
to the grid size, and on an accurate short-characteristics formal
solver of the Stokes-vector transfer equation that uses mono-
tonic Bézier interpolation. A key feature of our multilevel code
called PORTA (POlarized Radiative TrAnsfer) is its paralleliza-
tion strategy, which allows us to speed up the numerical solution
of complicated 3D problems by several orders of magnitude with
respect to sequential radiative transfer approaches.

The multilevel radiative transfer problem currently solved
by PORTA is the so-called non-local thermodynamic equili-
brum (LTE) problem of the 2nd kind (Landi Degl’Innocenti &
Landolfi 2004, hereafter LL04; see also Trujillo Bueno 2009),
where the phenomenon of scattering in a spectral line is de-
scribed as the temporal succession of statistically-independent
events of absorption and re-emission (complete frequency re-
distribution, or CRD). This is a formidable numerical problem

that implies calculating, at each spatial grid point of the (gen-
erally magnetized) 3D stellar atmosphere model under consid-
eration, the values of the multipolar components of the atomic
density matrix corresponding to each atomic level of total angu-
lar momentum J. These ⇢K

Q
(J) elements, with K = 0, . . . , 2J

and Q = �K, . . . ,K, quantify the overall population of each
level J (⇢0

0(J)), the population imbalances between its magnetic
sublevels (⇢K

0 (J), with K > 0), and the quantum coherence be-
tween each pair of them (⇢K

Q
(J), with K > 0 and Q , 0). The

values of these density-matrix elements have to be consistent
with the intensity, polarization, and symmetry properties of the
incident radiation field generated within the medium. Finding
these density-matrix values requires solving jointly the radia-
tive transfer (RT) equations for the Stokes parameters (I(⌫,⌦) =
(I,Q,U,V)T, with ⌫ and⌦ the frequency and direction of propa-
gation of the radiation beam under consideration) and the sta-
tistical equilibrium equations (SEE) for the ⇢K

Q
(J) elements.

These ⇢K

Q
(J) elements, at each spatial grid point of the 3D at-

mospheric model and for each level J of the considered atomic
model, provide a complete description of the excitation of each
level J. As a result, the radiative transfer coe�cients (i.e., the
emission vector and the propagation matrix of the Stokes-vector
transfer equation) corresponding to each line transition depend
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ABSTRACT
A multilevel accelerated lambda iteration (MALI) method for radiative transfer calculations with

partial frequency redistribution (PRD) is presented. The method, which is based on Rybicki & HummerÏs
complete frequency redistribution (CRD) formalism with full preconditioning, consistently accounts for
overlapping radiative transitions. Its extension to PRD is implemented in a very natural way through
the use of the ( operator operating on the emissivity rather than the commonly used " operator, which
operates on the source function. Apart from requiring an additional inner computational loop to evalu-
ate the PRD emission-line proÐles with Ðxed population numbers, implementation of the presented
method requires only a trivial addition of computer code. Since the presented method employs a diago-
nal operator, it is easily extended to di†erent geometries. Currently, it has been implemented for one-,
two-, and three-dimensional Cartesian grids and spherical symmetry. In all cases, the speed of con-
vergence with PRD is very similar to that in CRD, with the former sometimes even surpassing the latter.
Sample calculations exhibiting the favorable convergence behavior of the PRD code are presented in the
case of the Ca II H and K lines, the Mg II h and k lines, and the hydrogen Lya and Lyb lines in a
one-dimensional solar model and the Ca II resonance lines in a two-dimensional Ñux-sheet model.
Subject headings : line : formation È methods : numerical È radiative transfer È stars : atmospheres È

Sun: atmosphere

1. INTRODUCTION

One-dimensional models in which the solar atmosphere
is represented by a plane-parallel layer that varies only in
depth have been in use for more than three decades. With a
steady increase in computational power and occasional
improvements in numerical algorithms, complex plane-
parallel models including the e†ects of many atomic levels
and transitions can now be constructed without the a priori
assumption of local thermodynamic equilibrium (LTE).
Typically, they are capable of accurately reproducing the
observed spectrum in a spatially or temporally averaged
sense. Yet, it is clear from high-resolution images taken in
almost any spectral band that the SunÏs atmosphere is
strongly spatially inhomogeneous and continuously in
motion. The question arises, therefore, whether plane-
parallel models are representative for the mean properties
of such a complex medium and whether they can be used to
extract accurate physical quantities from observed spectra.
Indeed, simulations that explicitly account for spatial struc-
ture and temporal variations hint otherwise and give evi-
dence that average one-dimensional models may fail to
describe even a plasmaÏs mean properties accurately. A
striking example is provided by the chromospheric
dynamics simulations of Carlsson & Stein (1995, 1997,
1999). These show that the one-dimensional semiempirical
model constructed to reproduce the temporally averaged
simulated spectrum requires a chromospheric temperature
rise while the modelÏs actual mean gas temperature
decreases monotonically.

When the timescales of (microscopic) physical processes
in parts of the atmosphere are of the order of (macroscopic)
dynamical timescales or longer, it becomes difficult to rep-
resent a dynamic atmosphereÏs mean properties by an

1 Operated by the Association of Universities for Research in
Astronomy, Inc. (AURA), for the National Science Foundation.

instantaneous static model ; the atmosphere has properties
that relate to its history. An example of such a memory
e†ect is the slow rate of hydrogen recombination that
occurs in the chromospheric dynamics simulations. It
causes the mean degree of ionization of hydrogen to be
much higher in the top of the atmosphere than would be
expected on the basis of the mean conditions at that height
(Carlsson & Stein 1999). Another example is the chemical
association timescale of molecules, which is much longer in
the upper photosphere than the timescale of dissociation
(e.g., Avrett et al. 1996). In a dynamic atmosphere, this may
cause the mean concentration of molecules to be lower than
would be expected on the basis of Saha-Boltzmann sta-
tistics at the mean temperature of the atmosphere (e.g.,
Uitenbroek 2000a, 2000b).

From the above discussion, it is clear that we cannot rely
on static average one-dimensional models to understand
geometrically complex and dynamical situations. Instead,
there is a need for accurate and efficient numerical transfer
codes that can be employed to construct multidimensional
and time-dependent models in which solutions may be
costly and have to be performed many times. These codes
should allow strong lines to be treated with the partial fre-
quency redistribution (PRD) formalism when coherent scat-
tering is an important excitation mechanism. This is not
only necessary for diagnostic purposes but also for a proper
calculation of radiative losses, as the redistribution function
controls how photons can escape from the atmosphere. For
instance, in the simulations performed by Carlsson & Stein
(1995, 1997, 1999), the temperature structure is determined
by the balance between mechanical work on the atmo-
sphere and radiative losses in strong lines. To compute the
latter, these authors solve explicitly for radiative transfer in
hydrogen, helium, and calcium while all other elements in
the background are treated in LTE. To keep the numerical
problem tractable, they are forced to use the approximation
of complete frequency distribution (CRD) for the strong
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Abstract

Tools for computing detailed optically thick spectral line profiles out of local thermodynamic equilibrium have
always been focused on speed, due to the large computational effort involved. With the Lightweaver framework,
we have produced a more flexible, modular toolkit for building custom tools in a high-level language, Python,
without sacrificing speed against the current state of the art. The goal of providing a more flexible method for
constructing these complex simulations is to decrease the barrier to entry and allow more rapid exploration of the
field. In this paper we present an overview of the theory of optically thick nonlocal thermodynamic equilibrium
radiative transfer, the numerical methods implemented in Lightweaver including the problems of time-dependent
populations and charge-conservation, as well as an overview of the components most users will interact with, to
demonstrate their flexibility.

Unified Astronomy Thesaurus concepts: Radiative transfer (1335); Radiative transfer simulations (1967);
Computational methods (1965); Solar physics (1476); Stellar physics (1621)

1. Introduction

Optically thick nonlocal thermodynamic equilibrium (NLTE)
radiative transfer (RT) is one of the most computationally
intensive problems in modern solar and stellar physics. It
consists of taking a model atmosphere and computing self-
consistent atomic populations while taking into account the fact
that radiation originating from these atomic transitions may also
affect their states elsewhere in the atmosphere. The high
numerical cost of this problem is due in part to the high
dimensionality of the the intensity, as it varies with wavelength
and direction in addition to the spatial and temporal variation of
most other quantities considered, and also the possibly large
number of contributors at each wavelength. The NLTE problem
can be extended to take into account the problem of finding an
electron density consistent with the atomic populations, and this
will also be discussed.

In recent times there has been a rise of flexible high-
performance frameworks available in high-level languages
such as Python. One domain where these have demonstrated
their power is machine learning, where the building blocks
provided by the frameworks allow researchers to rapidly
prototype new systems with little loss in performance over a
hand-tuned highly specific low-level implementation. The goal
of Lightweaver is to provide a similar set of tools for plane-
parallel optically thick RT. To this end it consists of an
extensible Python frontend with a clean high-performance
C++ backend. During development the code has been
extensively tested against both RH (Uitenbroek 2001; Pereira
& Uitenbroek 2015) and SNAPI (Milić & van Noort 2018), to
ensure agreement between all three on a range of problems.
While most RT tools are designed specifically for a single task,
there is much commonality between the operations performed
(especially the most costly operations, such as the formal
solution of the RT equation (RTE)). It is therefore reasonable to
abstract out these common building blocks in a way that allows

a user to quickly build what amounts to a specialized tool with
very little code, in a high-level, memory-safe language that is
widely supported in the scientific computing community.
This paper describes in detail the components of the

Lightweaver framework, including the numerical methods
used. In Section 2 we provide an overview of NLTE RT and
describe the numerical methods and their implementations.
Then in Section 3 the structure of the framework is described to
demonstrate how modularity is achieved.
Lightweaver can be installed by an end-user through the

standard Python package manager pip without need for
particular compilers to be installed. The code is freely available
under the permissive MIT license5 and is available on GitHub6

with archival on Zenodo (Osborne 2021a). Lightweaver is in
constant development and suggestions and enhancements are
welcomed by contacting the authors or through the software’s
repository. All examples in this paper were tested against the
most recent release of Lightweaver, v0.5.0. These examples are
available on Zenodo (Osborne 2021b).

2. Numerical NLTE RT

In this section we first present a brief overview of NLTE RT;
for a much more in-depth introduction see Hubený & Mihalas
(2014). We also explain how most terms are implemented in
Lightweaver, especially those that are less apparent.
Solving the NLTE RT problem consists primarily of two

coupled sub-problems.

1. Solving the RTE to obtain the specific intensity at each
frequency, point, and direction in the discretized computa-
tional domain for a given set of atomic populations and a
given atmospheric model. This step is known as the formal
solution of the RTE.

https://doi.org/10.3847/1538-4357/ac02beThe Astrophysical Journal, 917:14 (17pp), 2021 August 10 
© 2021. The Author(s). Published by the American Astronomical Society.

5 https://opensource.org/licenses/MIT
6 https://github.com/Goobley/Lightweaver
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ABSTRACT

The emergence of three-dimensional magneto-hydrodynamic simulations of stellar atmospheres has sparked a need for e�cient
radiative transfer codes to calculate detailed synthetic spectra. We present RH 1.5D, a massively parallel code based on the RH code
and capable of performing Zeeman polarised multi-level non-local thermodynamical equilibrium calculations with partial frequency
redistribution for an arbitrary amount of chemical species. The code calculates spectra from 3D, 2D or 1D atmospheric models on a
column-by-column basis (or 1.5D). While the 1.5D approximation breaks down in the cores of very strong lines in an inhomogeneous
environment, it is nevertheless suitable for a large range of scenarios and allows for faster convergence with finer control over the
iteration of each simulation column. The code scales well to at least tens of thousands of CPU cores, and is publicly available. In
the present work we briefly describe its inner workings, strategies for convergence optimisation, its parallelism, and some possible
applications.
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1. Introduction

The field of stellar atmospheres has undergone a dramatic
change with the advent of three-dimensional, radiative magne-
tohydrodynamic models. Complex simulations have been devel-
oped to study a variety of topics, including but not limited to so-
lar convection (Stein & Nordlund 1998; Wedemeyer et al. 2004;
Vögler et al. 2005), stellar and solar abundances (Asplund et al.
1999, 2000; Allende Prieto et al. 2002; Collet et al. 2007; Ca↵au
et al. 2007), solar surface magnetism (Stein & Nordlund 2006;
Cheung et al. 2007; Martínez-Sykora et al. 2008; Rempel et al.
2009), solar chromospheric dynamics (Hansteen et al. 2007;
Martínez-Sykora et al. 2009; Carlsson et al. 2010), convection
and granulation across the HR diagram (Ludwig et al. 2006;
Magic et al. 2013; Trampedach et al. 2014). While some of these
simulations include a detailed treatment of radiation, it is still
not detailed enough (and would be prohibitively expensive) for
the calculation of spectral lines in suitable detail. Therefore, the
need arises to calculate the predicted spectra from such model
atmospheres. To that e↵ect, a variety of codes have been de-
veloped (e.g. Ludwig & Ste↵en 2008; Leenaarts & Carlsson
2009; Hayek et al. 2011; Štěpán & Trujillo Bueno 2013) to cal-
culate synthetic spectra from 3D simulations, each code hav-
ing their strengths and weaknesses (see the review by Carlsson
2008). These codes operate under the usually valid assumption
that the detailed spectral calculations will not a↵ect the radiative
magneto-hydrodynamic (MHD) calculations significantly, and
one can just use the output of the simulations for the detailed

spectral calculations. In the present work we describe yet an-
other code to calculate spectra from 3D models. We believe it
to be su�ciently general and particularly unique to appeal to a
large community.

RH 1.5D is derived from the RH code (Uitenbroek 2001) and
shares a very large code base with it. However, there are impor-
tant improvements both in the optimisation of convergence and
in the parallelism that merit a separate description of the code.
While RH can be used to solve problems in a variety of geome-
tries (1D, 2D, 3D, spherical), RH 1.5D is designed to solve a
specific class of problems: the calculation of spectra from sim-
ulations on a column-by-column basis, or in 1.5D. The simula-
tions can be 1D, 2D, or 3D, but the calculations are made inde-
pendently for each simulation column. There are both limitations
and advantages of this approach, and we discuss them below.

The code is publicly available to download via a git repos-
itory1, and has online documentation2. The code version used
throughout this paper is v1.2 (Pereira et al. 2014).

This paper is organised as follows. In Sect. 2 we briefly de-
scribe the radiative transfer method used and strategies to im-
prove its convergence. In Sect. 3 we detail the parallelisation
strategy and evaluate its e�ciency. In Sect. 4 we briefly discuss
possible applications of the code, and finally conclude with a
summary in Sect. 5.

1
https://github.com/tiagopereira/rh

2
http://rh15d.readthedocs.org
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a b s t r a c t

3D detailed radiative transfer is computationally taxing, since the solution of the radiative transfer
equation involves traversing the six dimensional phase space of the 3D domain. With modern
supercomputers the hardware available for wallclock speedup is rapidly changing, mostly in response
to requirements to minimize the cost of electrical power. Given the variety of modern computing
architectures, we aim to develop and adapt algorithms for different computing architectures to improve
performance on a wide variety of platforms. We implemented the main time consuming kernels
for solving 3D radiative transfer problems for vastly different computing architectures using MPI,
OpenMP, OpenACC and vector algorithms. Adapted algorithms lead to massively improved speed for all
architectures, making extremely large model calculations easily feasible. These calculations would have
previously been considered impossible or prohibitively expensive. Efficient use of modern computing
devices is entirely feasible, but unfortunately requires the implementation of specialized algorithms
for them.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In a series of papers, we have described a framework for
solving the radiative transfer equation in 3D systems (3DRT),
including a detailed treatment of scattering in continua and lines
with a non local operator splitting method and its use in the
general model atmosphere package PHOENIX (Hauschildt and
Baron, 2006 Baron and Hauschildt, 2007, Hauschildt and Baron
2008, Hauschildt and Baron 2009, Baron et al., 2009, Hauschildt
and Baron, 2010, Seelmann et al., 2010, Hauschildt and Baron,
2011, Jack et al., 2012, Baron et al., 2012, Hauschildt and Baron,
2014 hereafter: Papers I–XI).

We give a short summary of the problem and the numerical
approach in the next section.

In typical non-local thermodynamic equilibrium (NLTE)
PHOENIX/3D applications, the 3DRT uses about 75% of the overall
compute time, that is, reducing the time consumed by the 3DRT
module will significantly reduce the overall simulation time. This
is an advantage of our approach since only a small subset of code
modules require specialized directives and code modifications to
match the targeted hardware and compiler.

⇤ Corresponding author.
E-mail addresses: yeti@hs.uni-hamburg.de (P.H. Hauschildt), baron@ou.edu

(E. Baron).

In Paper VII (2011) we showed that specialized codes for GPUs
can result in significantly improved performance compared to
standard CPUs of the era. With the availability of new many-core
CPUs (e.g., Intel Phi), vector CPUs (i.e., NEC Aurora TSUBASA) and
GPUs, the need for algorithms specially adapted to the hardware
in order to maximize performance on such systems becomes
apparent. This becomes more urgent due the fact that modern
supercomputers are being built using many-core CPUs or as hy-
brid CPU/GPU systems. While, it is likely that efficient use of such
systems will require specialized algorithms, it is not economical
to design special codes for each system or to use vendor-locked
programming models as individual computing system lifetimes
(5 years) are typically much shorter than code lifetimes (20+
years).

For these reasons, we investigate here how 3D radiative trans-
fer calculations can be accelerated using algorithms adapted to
many-core and vector CPUs as well as to GPUs. As codes will
be used potentially for decades, it is very important to adhere
to general standards as closely as possibly in order to retain
source code compatibility for long time scales. Thus, we will use
Fortran 2008 (Fortran Working Group, 2019) as the base pro-
gramming language and will use MPI (MPI Working Group, 2019),
OpenMP (OpenMP Working Group, 2019) and OpenACC (Ope-
nACC Working Group, 2019) as additional directive based per-
formance enhancers. In addition, directive based statements for

https://doi.org/10.1016/j.ascom.2021.100450
2213-1337/© 2021 Elsevier B.V. All rights reserved.
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Fig. 8. Timing of different algorithms for all considered systems. The horizontal bars give the overall execution walltimes (summed over all iterations) of the different
phases of the 3D radiative transfer solver as indicated by the colors. ‘Formal Solution’ designates the phase where new mean intensities are computed from the
current estimate of the source function (including the construction of the ⇤⇤ operator in the first iteration), ‘allreduce’ is the phase where the contribution of all
MPI processes are collected and summed up via MPI functions and ‘OS iteration’ is the time spent computing the new estimate of the source function (including
the solution of the large sparse linear system). The labels on the right hand of the bars give the overall execution time. The labels on the left hand side specify the
system or CPU, the algorithm, the solver of the large linear system in the OS step (Jacobi, Gauss–Seidel oder BiCGStab), the compiler and the parallelization setup
(where the notation x@y indices x MPI processes with y OpenMP thread each).

The main problems with OpenACC are that the compiler sup-
port needed for efficient and portable (to different GPU ven-
dors) code is not yet available and that complex code and data
structures may need to be adapted (simplified) for efficient Ope-
nACC data transfer. Overall, OpenACC code is simple to gener-
ate using the vector algorithm as a starting point. In the fu-
ture it may be better to switch to the OpenMP offload/target
paradigm which appears to be available for more hardware op-
tions and is supported by more compilers, in particular the LLVM
framework.2

The NEC Aurora vector processor is very fast and easy to code
for, however, its scalar performance is very low. In practical appli-
cations it may be best to combine the vector engine with the host
CPU whenever possible, where the 3DRT executes on the vector
processor and the host CPU is used for I/O and scalar processing.
Several methods allow for this option, including running MPI
processes on the vector processor and the host CPU at the same
time and offloading to and from the vector processor.

2 llvm.org.

The performance of the Xeon Phi KNL is quite sensitive to the
exact setup (MPI and OpenMP) used for each problem, thus, in
typical production use it is important to determine the optimal
configuration beforehand (or to implement an automatic scheme
to optimize the configuration at runtime). On all Intel CPUs,
the vector algorithm is less efficient than the MultiPass+Cache
version (recall that the vector version is a rearranged MultiPass
version and includes the geometry cache). This could be due to
the Intel compiler not using the vector instructions (which is
forced by OpenMP SIMD directives in the MultiPass algorithm)
automatically or by the vector instructions stalling to data gather
or scatter (which may be hidden by the many threads used on
the Xeon Phi).

Our results enable much larger model calculations than were
previously feasible. On standard CPU hardware the algorithms
developed for the KNL give at least a factor of 3–4 speedup
over standard Xeons, if NEC vector or GPU hardware is avail-
able speedup factors of 7–21 are possible. As the 3DRT takes
75% of the total simulation time, this speedup can reduce the
overall runtime by up to 75%, a massive savings in computer
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J. P. Bjørgen and J. Leenaarts: Numerical non-LTE 3D radiative transfer using a multigrid method

Fig. 10. Intensity of the Ca ii K line core computed from atmosphere Model 1 (left) and Model 2 (right) at µz = 1. The intensity is shown as the
brightness temperature Trad computed from B⌫(Trad) = I⌫.
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Fig. 11. Convergence behavior for MALI and multigrid for three-level Ca ii (left-hand panel) and hydrogen atom (right-hand panel) for atmosphere
Model 1. The computation was performed with three grids, full-weighting restriction, and trilinear interpolation. For three-level Ca ii we used
⌫1 = 2, ⌫2 = 2, ⌫3 = 32 and for H i we used ⌫0 = 15,⌫1 = 2, ⌫2 = 25, ⌫3 = 32.

– three-grid iteration converges faster than four-grid iteration;
– the coarse-grid iterations can converge to a negative solution.

This is not a problem for isolated grid points, but if extended
regions have negative populations, one should increase the
number of post-smoothing iterations;

– each atom and atmosphere requires some testing to find
the optimal number of pre-smoothings and post-smoothings.
Our findings in Table 1 can be used as a starting point.

Since each problem is unique, other atmospheres and atoms
could require di↵erent approaches. Therefore, the multigrid
method should be implemented into radiative transfer codes in
a modular way so that methods can be easily changed.

We did not obtain the high convergence rate (as measured in
spectral radius of the multigrid iteration) as reported in Fabiani
Bendicho et al. (1997). There are two reasons for this. First,
these authors used a static smooth 2D with a weak horizontal

temperature inhomogeneity and no vertical temperature gradi-
ent, while we are using moving atmospheres with very large
gradients in all atmospheric parameters. Second, they use Gauss-
Seidel (GS) iterations, while we use Jacobi iteration in Multi3D.
The smoothing properties and the convergence speed of GS it-
erations are superior to Jacobi iteration. Unfortunately, no MPI-
parallelization scheme exists for GS iteration that scales well to
thousands of computing cores, and we are forced to use Jacobi
iteration. The lower convergence speed per iteration for Jacobi
iteration can fortunately be o↵set by increasing the number of
computing cores, but, ideally, one should develop an e�cient
parallel GS iteration scheme. A similar conclusion was reached
by Štěpán & Trujillo Bueno (2013).

So far, we have only tested our multigrid method using com-
plete frequency redistribution. Because partial frequency redis-
tribution (PRD) can increase the computing time in non-LTE
problems by more than an order of magnitude, the obvious next
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Fig. 8. Individual line profiles for disk-centre intensity calculated from
the half resolution regular grid and an irregular grid with three million
sites sampled from log(NH)�2

T
�2/5. Every black line corresponds to the

brightness temperature from a column in the atmosphere. The spatial
average over all columns is represented by the red line. Dashed blue
lines indicate wavelength positions of the blue wing at 121.558 nm (or
�27 km s�1) and line centre �0 at 121.568 nm.

the computational costs of running a single iteration, we list in
Table 2 the time it took to run a single iteration on the regular and
irregular grids, for di↵erent number of grid points. The regular
grid experiments were performed at one half, one third, and one
quarter resolution, and for each case the corresponding irregu-
lar grids had exactly the same number of grid points (sites). The
experiment was performed using five cores of an AMD EPYC
7763 2.45GHz CPU, and the times were averaged over three it-
erations. There was no di↵erence in time per iteration from the
di↵erent irregular grids.

As for how many iterations we need to achieve convergence,
we plot in Fig. 9 the convergence rate vs. number of iterations
for the three irregular grids and the regular grid. Such 3D NLTE
problems are usually assumed to converge at a level around 10�3.
We see that the grid sampling log(NH)�2

T
�2/5 converges in about

the same number of iterations as the regular grid, while the other
two converge with about 1/3 fewer iterations.
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Fig. 9. ⇤-iteration convergence for irregular grids with three million
sites constructed from the labelled quantities, and the halved resolution
regular grid of the Bifrost atmospheric model.

4. Discussion

Our aim with this work was to find out if it is feasible to use
irregular grids to speed up 3D NLTE radiative transfer, just like
optimised height grids can be used to speed up 1D NLTE cal-
culations. We employ one of the most general irregular grids,
based on a 3D Voronoi diagram. In this first exploration, we
employed a simplified approach with an algorithm that is not
massively parallel and runs only on shared-memory systems. To
further reduce the complexity of the code we also use the sim-
pler ⇤-iteration scheme, which breaks down in the strong scat-
tering regimes. To reduce computation times, we use a simpli-
fied hydrogen-like model with two bound states and one contin-
uum, and assume complete redistribution. To make the problem
tractable with these limitations, we have artificially increased the
collisional rates.

We focus on the spectral profiles of the line from our model
atom, a modified Lyman-↵ line. Because we reduced the amount
of scattering by increasing the collisional rates, the source func-
tion is closer to LTE. Compared to Lyman-↵, our line is formed
in hotter regions and does not have the centre reversal. This ex-
plains why in both absolute intensity units and in brightness tem-
perature it is consistently brighter than Lyman-↵ from observa-
tions or simulations (e.g. Schmit et al. 2017).

Given the assumptions above, our experiments still give us
valuable insight. Our searchlight beam test showed that our ray
tracing algorithm in irregular grids produces good results, show-
ing a di↵usion that is comparable to short characteristics with
linear interpolation. The test of synthesising continuum inten-
sities in LTE probed the e↵ects of interpolating to a Voronoi
grid and back to the original grid, and it gave two key results.
First, it demonstrated that it is crucial to build the irregular grid
on a quantity relevant for the transport of radiation, with ↵500
being the most relevant quantity here. Second, it showed that a
properly optimised irregular grid can facilitate the calculation of
radiation with about an order of magnitude fewer grid points.
Nevertheless, one should keep in mind that for continuum radia-
tion this feat is easier to accomplish because the radiation comes
from a relatively shallow region. A much more stringent test is
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Fig. 2. Illustration of a Voronoi grid sampled from the Bifrost simula-
tion. To clarify some features of the grid, the number of points is sig-
nificantly lower than the cells in the original grid. This example grid
was constructed to follow the log hydrogen density, log(NH). The white
spheres represent the sites, and red lines indicate the edges between cell
borders.

(2013) develop a method to trace rays through straight paths
in irregular grids. This has the advantage of allowing one to
trace straight rays through the whole domain for any direction,
but requires additional computations to find walls of each cell
and entry and exit points of the ray. Ritzerveld & Icke (2006)
use a di↵erent approach, where rays are only allowed to travel
along Delaunay lines, an approach that is also followed in other
codes such as Lime (Brinch & Hogerheijde 2010) and SimpleX2
(Paardekooper et al. 2010). This approach is simpler and re-
quires fewer interpolations, but a downside is that rays can only
travel along the predetermined directions that connect cell cen-
tres. However, as Paardekooper et al. (2010) demonstrate in their
Fig. 5, one can choose the direction of each segment such as the
overall direction (once the ray has travelled through several cells)
remains very close to a target direction. In this work we follow
the approach of having rays travel only through Delaunay lines
because it is computationally simpler.

Our approach to ray tracing is inspired by the short-
characteristics (SC) method of Kunasz & Auer (1988). We want
to calculate the intensity at every site, both for upward-travelling
rays starting at the bottom boundary as well as downward-
travelling rays starting at the top boundary. While Lime and
SimpleX2 use a Monte Carlo approach to sample di↵erent di-
rections, we adopt instead a fixed angle quadrature, which we
use to integrate the intensity in di↵erent directions and obtain

Fig. 3. Two-dimensional representation of ray tracing in an irregular
grid. The red point is where we want to calculate the intensity, and the
thick black arrow is the direction of the ray (characteristic). In our al-
gorithm, the incoming intensity is a combination of I0,1 and I0,2, the
intensity coming from the two sites with the smallest angles between
the Delaunay lines and the direction of the ray, ✓1 and ✓2.

J�. Štěpán et al. (2020) and Jaume Bestard et al. (2021) have
developed optimised angle quadratures for 3D radiative trans-
fer in stellar atmospheres, and here we adopted the quadrature
optimised for unpolarised radiative transfer with nrays = 12 and
L = 7 from Jaume Bestard et al. (2021).

For each ray in the quadrature, we compute the intensity by
tracing rays along the Delaunay lines that lie closest to the char-
acteristic angle. To avoid problems with sparse sampling, for the
intensity at each site we combine formal solutions along two
directions, coming from the two Delaunay lines that have the
smallest angle from the characteristic ray:

Ii = w1Ii,1 + w2Ii,2, (5)

where we design the weights wi to favour Delaunay lines that
have a smaller angle to the target quadrature angle, and nor-
malise them:

wi =
vr

iP
j=k1,k2 v

r

j

, (6)

where vi is the dot product between the direction of the ray and
the direction of the Delaunay line, and the exponent r is treated
as a free parameter. After some experimentation, we find r = 7
to be a suitable value.

One can design the transport of radiation in di↵erent ways
(e.g. combining intensity from additional neighbours, or adopt-
ing di↵erent weights), but we find that our algorithm works well
to correct the discrepancy between a quadrature angle and the an-
gles of the Delaunay lines. In an irregular grid with sites drawn
from a 3D Poisson distribution, a site has on average 15.54
neighbours (van de Weygaert 1994). Using our 3D atmosphere
with ⇡ 300 000 sites drawn according to the hydrogen density,
the average number of neighbours was 15.44. Consequently, ev-
ery site should have some Delaunay lines whose direction di↵ers
only by a small amount from a quadrature ray.

To compute the I� along each Delaunay line we solve the
integral in the formal solution (2) numerically by using linear
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Fig. 8. Individual line profiles for disk-centre intensity calculated from
the half resolution regular grid and an irregular grid with three million
sites sampled from log(NH)�2

T
�2/5. Every black line corresponds to the

brightness temperature from a column in the atmosphere. The spatial
average over all columns is represented by the red line. Dashed blue
lines indicate wavelength positions of the blue wing at 121.558 nm (or
�27 km s�1) and line centre �0 at 121.568 nm.

the computational costs of running a single iteration, we list in
Table 2 the time it took to run a single iteration on the regular and
irregular grids, for di↵erent number of grid points. The regular
grid experiments were performed at one half, one third, and one
quarter resolution, and for each case the corresponding irregu-
lar grids had exactly the same number of grid points (sites). The
experiment was performed using five cores of an AMD EPYC
7763 2.45GHz CPU, and the times were averaged over three it-
erations. There was no di↵erence in time per iteration from the
di↵erent irregular grids.

As for how many iterations we need to achieve convergence,
we plot in Fig. 9 the convergence rate vs. number of iterations
for the three irregular grids and the regular grid. Such 3D NLTE
problems are usually assumed to converge at a level around 10�3.
We see that the grid sampling log(NH)�2

T
�2/5 converges in about

the same number of iterations as the regular grid, while the other
two converge with about 1/3 fewer iterations.
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Fig. 9. ⇤-iteration convergence for irregular grids with three million
sites constructed from the labelled quantities, and the halved resolution
regular grid of the Bifrost atmospheric model.

4. Discussion

Our aim with this work was to find out if it is feasible to use
irregular grids to speed up 3D NLTE radiative transfer, just like
optimised height grids can be used to speed up 1D NLTE cal-
culations. We employ one of the most general irregular grids,
based on a 3D Voronoi diagram. In this first exploration, we
employed a simplified approach with an algorithm that is not
massively parallel and runs only on shared-memory systems. To
further reduce the complexity of the code we also use the sim-
pler ⇤-iteration scheme, which breaks down in the strong scat-
tering regimes. To reduce computation times, we use a simpli-
fied hydrogen-like model with two bound states and one contin-
uum, and assume complete redistribution. To make the problem
tractable with these limitations, we have artificially increased the
collisional rates.

We focus on the spectral profiles of the line from our model
atom, a modified Lyman-↵ line. Because we reduced the amount
of scattering by increasing the collisional rates, the source func-
tion is closer to LTE. Compared to Lyman-↵, our line is formed
in hotter regions and does not have the centre reversal. This ex-
plains why in both absolute intensity units and in brightness tem-
perature it is consistently brighter than Lyman-↵ from observa-
tions or simulations (e.g. Schmit et al. 2017).

Given the assumptions above, our experiments still give us
valuable insight. Our searchlight beam test showed that our ray
tracing algorithm in irregular grids produces good results, show-
ing a di↵usion that is comparable to short characteristics with
linear interpolation. The test of synthesising continuum inten-
sities in LTE probed the e↵ects of interpolating to a Voronoi
grid and back to the original grid, and it gave two key results.
First, it demonstrated that it is crucial to build the irregular grid
on a quantity relevant for the transport of radiation, with ↵500
being the most relevant quantity here. Second, it showed that a
properly optimised irregular grid can facilitate the calculation of
radiation with about an order of magnitude fewer grid points.
Nevertheless, one should keep in mind that for continuum radia-
tion this feat is easier to accomplish because the radiation comes
from a relatively shallow region. A much more stringent test is
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B. A. Chappell and T. M. D. Pereira: SunnyNet: A neural network approach to 3D non-LTE radiative transfer
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Fig. 9. H↵ intensity for the flaring simulation at snapshot t = 9570 s for the line core (top) and red wing at v = 15.96 km s�1 (bottom).

the Bifrost code and share similar physics inputs such as the
equation of state, and treatment of radiation, they have substan-
tial di↵erences in height stratification, magnetic configuration,
and physical size, as described below. The goal with these “out-
of-sample” tests was to run a worst-case scenario for SunnyNet,
using simulations substantially di↵erent from those used for the
training.

The first out of sample simulation is both larger and much
deeper, with a size of 72 ⇥ 72 ⇥ 64 Mm3, with 8.5 Mm above
the photosphere. We refer to this simulation as the “extended”
simulation. The simulation is part of a study of flux emer-
gence by Hansteen et al. (2020), and was provided courtesy of
V. H. Hansteen. It was started with a 10 mT horizontal magnetic
field throughout the convection zone, and a sheet with 20 mT
was injected at the bottom boundary, followed by injections of
100 mT after 63 min and 200 mT after 133 min, decreasing to
30 mT at 288 min. This flux took a few hours to reach the surface,
and the snapshot we used here happens when a good amount of
mixing and flux emergence was already underway at the surface,
at about 367 min from the start. This extended simulation has a
horizontal resolution of 100 km pix�1, which is nearly the same
as the pixel size we used for the training simulations, just a much

larger spatial extent and number of pixels: 720⇥720⇥635, about
8 times larger than the training simulations.

The second out of sample simulation has a much smaller
physical size but higher spatial resolution. We refer to it as
the “high resolution” simulation. Its spatial extent is 6 ⇥ 6 ⇥
10.3 Mm3, and it is part of an experiment with a higher spatial
resolution of 23 km pix�1. This simulation was provided cour-
tesy of M. Carlsson. It is much more quiet than the other simula-
tions, with a mean unsigned magnetic field in the photosphere of
about 0.6 mT. Although this simulation has a much smaller spa-
tial extent, it has about the same number of pixels as the training
simulations: 256⇥ 256⇥ 430. Given its reduced spatial coverage
and weak magnetic fields, this simulation lacks prominent mag-
netic loops or long chromospheric fibrils. The aim of including
this simulation was not just to test a more quiet Sun configura-
tion, but also to see how SunnyNet would fare when testing a
simulation with a much higher spatial resolution than the train-
ing simulations. In both training and testing the window size
was kept at 3 ⇥ 3. Because the simulations have di↵erent res-
olutions, the three pixels of the window have di↵erent physical
sizes between the training and testing simulations, which leads
to inconsistencies in the spatial extent of the windows. This was
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We need to break down the populations into individual pairs
of input Xi’s and target yi’s, and then group these into training
and validation sets. The simplest approach is to consider the
1.5D problem. Each column in the LTE atmosphere is treated
as an independent input Xi with shape (6,Nz, 1, 1) and its corre-
sponding column from the NLTE atmosphere is the target point
yi with shape (6,Nz, 1, 1). Building our training pairs in this way
ignores all oblique radiation and therefore the network does not
consider the problem in 3D.

By choosing a window of neighboring LTE columns as Xi
and the NLTE column corresponding to the middle column of
the LTE bundle as yi, we can force the network to consider the
problem in 3D. The SunnyNet framework has networks built to
handle inputs of size (6,Nz, 1, 1), (6,Nz, 3, 3), (6,Nz, 5, 5), and
(6,Nz, 7, 7). Figure 1 shows an example of a 3⇥ 3 data pair, with
the red LTE pixel being the pixel of interest. The window size is
a user-determined variable and should be chosen with consider-
ation to the spatial resolution of the simulation.

After splitting up our data into (6,Nz,Nx,Ny) training pairs,
we need to standardize the z dimension, defined as height in the
BIFROST simulations. Neural networks are rigid with respect to
the size of the input data they can handle, but simulations can
have varying height scales and di↵erent Nz. To solve this prob-
lem and make SunnyNet general for simulations with di↵erent
height scales, we converted the z dimension from a height scale
to a column mass scale with a fixed number of points. The col-
umn mass is a more relevant quantity for radiative transfer, and
the range of column masses that a given spectral line is sensitive
to is a more tightly defined quantity than the range of heights,
which depend on the particular stratification.

To convert the populations from height to column mass, we
started by computing the average column mass for each height
in the simulation, and then interpolated the populations from this
scale to our chosen column mass scale. For our runs, we used 400
points for the new column mass scale, evenly spaced on a log10
scale ranging from 10�6 to 102 kg m�2, which covers the regions
in the atmosphere that the hydrogen lines in our model atom are
most sensitive to. We did this for both the LTE inputs and the
NLTE targets, giving all the data we used a uniform dimension
of (6, 400,Nx,Ny).

Finally, before feeding the populations to SunnyNet, both in
the training and testing, we took the log10 of the populations.
This is for two reasons. First, to better condition the problem
since the populations for a given simulation column can span
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Fig. 2. Visualization of one (6, 400, x, y) data point passing through the
SunnyNet.

more than 17 orders of magnitude. Second, the logarithm of pop-
ulations will ensure that the predicted populations are always
positive and avoid unphysical solutions. The choice of working
in log space will have some consequences, which we discuss
later.

2.4. Network structure

The arrangement of layers often requires quite a bit of guess
work, as each application of neural networks is so unique and
there is a limited “best practice” standard. There are undoubtedly
many di↵erent and complex network structures that would work
well for radiative transfer problems. We found that the archi-
tecture shown in Fig. 2 both performed well and was relatively
simple.

This structure starts with a 3D convolutional layer which
can be selected to fit input data with window sizes of 1 ⇥ 1,
3 ⇥ 3, 5 ⇥ 5, and 7 ⇥ 7. This is the layer responsible for cap-
turing all of the 3D information across all channels of the input.
Figure 1 shows how the 3D convolutional layer processes the
input data for the 3⇥3 case. The (6, 3, 3, 3) set of filters (yellow)
is restricted to only moving down the data column, pulling out
one output value (green) for each convolutional step. Therefore,
at each step, the network is gathering information from the point
of interests nearest neighbors in all directions. The process is the
same for the other input shapes, with the filters taking shapes
(6, 3, 1, 1), (6, 3, 5, 5), and (6, 3, 7, 7).

Next come three standard convolutional blocks consisting
of a 1D convolutional layer, an activation function, and a 1D
MaxPool layer. The Rectified Linear Unit (ReLU) activation
function introduces nonlinearity to our network and the Max-
Pool layer reduces dimensionality in the physical dimension.
At the end of our last convolutional block, we flattened all of
the learned features and untangle them using two linear lay-
ers. We included a drop-out layer between the two linear lay-
ers which randomly “turns o↵” nodes and their connections in
a layer at a given probability p during each training iteration.
This helps to prevent over-fitting by training with a slightly dif-
ferent view of model at each iteration, thus increasing general-
ization. Our output is a vector of length 2400, which we then
reshape to (6, 400, 1, 1) to match the dimensionality of the target
yi point.
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We need to break down the populations into individual pairs
of input Xi’s and target yi’s, and then group these into training
and validation sets. The simplest approach is to consider the
1.5D problem. Each column in the LTE atmosphere is treated
as an independent input Xi with shape (6,Nz, 1, 1) and its corre-
sponding column from the NLTE atmosphere is the target point
yi with shape (6,Nz, 1, 1). Building our training pairs in this way
ignores all oblique radiation and therefore the network does not
consider the problem in 3D.

By choosing a window of neighboring LTE columns as Xi
and the NLTE column corresponding to the middle column of
the LTE bundle as yi, we can force the network to consider the
problem in 3D. The SunnyNet framework has networks built to
handle inputs of size (6,Nz, 1, 1), (6,Nz, 3, 3), (6,Nz, 5, 5), and
(6,Nz, 7, 7). Figure 1 shows an example of a 3⇥ 3 data pair, with
the red LTE pixel being the pixel of interest. The window size is
a user-determined variable and should be chosen with consider-
ation to the spatial resolution of the simulation.

After splitting up our data into (6,Nz,Nx,Ny) training pairs,
we need to standardize the z dimension, defined as height in the
BIFROST simulations. Neural networks are rigid with respect to
the size of the input data they can handle, but simulations can
have varying height scales and di↵erent Nz. To solve this prob-
lem and make SunnyNet general for simulations with di↵erent
height scales, we converted the z dimension from a height scale
to a column mass scale with a fixed number of points. The col-
umn mass is a more relevant quantity for radiative transfer, and
the range of column masses that a given spectral line is sensitive
to is a more tightly defined quantity than the range of heights,
which depend on the particular stratification.

To convert the populations from height to column mass, we
started by computing the average column mass for each height
in the simulation, and then interpolated the populations from this
scale to our chosen column mass scale. For our runs, we used 400
points for the new column mass scale, evenly spaced on a log10
scale ranging from 10�6 to 102 kg m�2, which covers the regions
in the atmosphere that the hydrogen lines in our model atom are
most sensitive to. We did this for both the LTE inputs and the
NLTE targets, giving all the data we used a uniform dimension
of (6, 400,Nx,Ny).

Finally, before feeding the populations to SunnyNet, both in
the training and testing, we took the log10 of the populations.
This is for two reasons. First, to better condition the problem
since the populations for a given simulation column can span
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more than 17 orders of magnitude. Second, the logarithm of pop-
ulations will ensure that the predicted populations are always
positive and avoid unphysical solutions. The choice of working
in log space will have some consequences, which we discuss
later.

2.4. Network structure

The arrangement of layers often requires quite a bit of guess
work, as each application of neural networks is so unique and
there is a limited “best practice” standard. There are undoubtedly
many di↵erent and complex network structures that would work
well for radiative transfer problems. We found that the archi-
tecture shown in Fig. 2 both performed well and was relatively
simple.

This structure starts with a 3D convolutional layer which
can be selected to fit input data with window sizes of 1 ⇥ 1,
3 ⇥ 3, 5 ⇥ 5, and 7 ⇥ 7. This is the layer responsible for cap-
turing all of the 3D information across all channels of the input.
Figure 1 shows how the 3D convolutional layer processes the
input data for the 3⇥3 case. The (6, 3, 3, 3) set of filters (yellow)
is restricted to only moving down the data column, pulling out
one output value (green) for each convolutional step. Therefore,
at each step, the network is gathering information from the point
of interests nearest neighbors in all directions. The process is the
same for the other input shapes, with the filters taking shapes
(6, 3, 1, 1), (6, 3, 5, 5), and (6, 3, 7, 7).

Next come three standard convolutional blocks consisting
of a 1D convolutional layer, an activation function, and a 1D
MaxPool layer. The Rectified Linear Unit (ReLU) activation
function introduces nonlinearity to our network and the Max-
Pool layer reduces dimensionality in the physical dimension.
At the end of our last convolutional block, we flattened all of
the learned features and untangle them using two linear lay-
ers. We included a drop-out layer between the two linear lay-
ers which randomly “turns o↵” nodes and their connections in
a layer at a given probability p during each training iteration.
This helps to prevent over-fitting by training with a slightly dif-
ferent view of model at each iteration, thus increasing general-
ization. Our output is a vector of length 2400, which we then
reshape to (6, 400, 1, 1) to match the dimensionality of the target
yi point.
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Summary

• 3D NLTE essential for precision spectroscopy


• 3D NLTE essential to understand solar chromospheric radiation


• Challenges ahead: large surveys, exoplanets, new solar telescopes


• Need faster 3D NLTE: synergies for solar and stellar astrophysics
1412 T. M. D. Pereira et al.: Oxygen lines in solar granulation. II.
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Fig. 8. Synthetic line profiles (solid lines) for the O +Ni  630.03 nm blend vs. observations (circles). Shaded regions indicate the range over which
the profiles were fitted. Left panels: fit for FTS Intensity atlas, done over the wavelength range of Allende-Prieto et al. (2001). Middle panels: fit
for our observations, disk-centre. Right panels: our observations at µ = 0.197, and profiles from models using abundance fitted at disk-centre,
adjusted for continuum. The wavelength shift was measured for each model and disk position separately from Fe  lines (see text). Ni abundance
was fixed at 6.22, 6.16, 6.26 for the 3D model, 1D  model and 1D HM model, respectively.
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Fig. 9. Equivalent width vs. µ for the [O ]+Ni  630.03 nm lines blend,
for our observations and different models at different positions in the
solar disk.

disk-centre also indicate an excess of intensity in the red wing.
The line profile at low µ with the disk-centre abundance shows
a slightly weaker line than the observations. The oxygen abun-
dances from profile fitting with the FTS disk-centre atlas for
the HM and  models were, respectively, 8.69 and 8.66.

4.2.6. Comparison with previous work

An easy comparison to be made is with ALA01. Some things
have been done differently in the present study. We computed a
proper blend of the two transitions (adding line opacities), in-
stead of computing separate line profiles for each line and co-
adding them. We also performed a more precise wavelength cal-
ibration using Fe  lines. And finally, we employed a more recent
3D model and a higher Ni abundance. Fitting the flux profiles
against the FTS flux atlas and using the same fitting range in
ALA01, we obtained an oxygen abundance 0.07 dex lower. The
reason for this difference is mainly the higher Ni abundance used
(6.22 vs. 6.05), which translates to a ≈−0.07 dex difference in

3D
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3D
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