

Solar activity proxies from VIRGO and GOLF observations

SpaceInn Deliverable 4.2

David SALABERT CEA Saclay, Gif-sur-Yvette, France

CoRoT observations of HD49933

- A magnetic cycle in a Sun-like star: Garcia et al., Science (2010)
- Light curve modulation: signature of starspots
- A global starspot proxy: the standard deviation of the light curve

Photometric magnetic activity of stars

- Characterization of the variability in *Kepler* observations
- Different indices defined by Basri et al. (2010, 2013)
 - \succ The range, R_{var} :
 - Considered as a metric of the photometric magnetic activity
 - Stellar flux between 5% and 95% of the brightness
 - Underestimate activity level of very active stars
 - > The median differential variability, MDV:
 - Computed for data rebinned from 1 hour up to 8 days

Sources of light curve variability

- Can be due to different phenomena:
 - Pulsations
 - Granulation
 - Rotation
 - Starspots
- To properly define an indicator measuring the variability induced by magnetic activity
 - > We need to introduce the rotation period of the star
 - Relies on the presence of spots (thus magnetic field) on stellar surface

Definition of the S_{ph} indice

ppm

- Define an index taking into account:
 - Rotation of the star
 - Temporal variations of the activity level
- Standard deviations S_{ph,k}
 - Calculated over subseries of k x P_{rot}
 - P_{rot} = rotational period
 - k = [30, 20, 10, 6, 5, 4, 3, 2, and 1]
 - Black lines: stddev(entire time series)
 - Red lines: mean <Sph,k>

2000

4000

5000

3000

Day

k = 50

30×Prot boxes

3000

= 5

= 3

²⁰⁰⁰ 3000 4000 k = 20

500

400 300

ਲੈ ₂₀₀

4000 5000

Mathur et al. (2014) Journal of Space Weather and Space Climate (2014)

VIRGO observations

The Sun, $P_{rot} = 27.00$ days, **VIRGO** observations

6000

6000

6000

6000

KIC6464396, P_{rot} = 13.16 days Kepler observations

S_{ph} over 5xP_{rot} sub series

- <S_{ph,k}> as a function of k for 31 M-stars (+ the Sun in red)
- Found that 5 x P_{rot} reasonably:
 - Describes the magnetic temporal evolution
 - Provides a correct value of global activity index

Solar activity proxies from VIRGO and GOLF observations

- <u>SpaceInn deliverable D4.2</u>: monitoring of solar activity
- Measurement of a magnetic proxy derived:
 - from the photometric VIRGO/SPM observations S_{ph} in ppm
 - blue, green, and red channels
 - Kepler-like composite
 - o green+red channels: closest banwdith with Kepler (Basri et al. 2010)
 - from the Doppler velocity GOLF observations S_{vel} in m/s
- Observations starting on April 11, 1996
- Observations processed through the KADACS Kepler pipeline (Garcia et al, 2011) to monitor long-lived features on solar surface
- Paper in preparation, Salabert et al. 2015

VIRGO and GOLF observations

S_{ph} and S_{vel} compared to common solar activity proxies

Correlation coefficients

Activity proxy	$S_{\rm ph, BLUE}$	$S_{\rm ph, green}$	$S_{\rm ph, RED}$	$S_{\rm ph, composite}$	S _{vel}	SSN ^a	Ca II-K ^b	$F_{10.7-cm}^{c}$	MMF^d
MMF^{d}	0.86	0.86	0.86	0.86	0.83	0.77	0.77	0.79	n/a
$F_{10.7-cm}^{c}$	0.86	0.90	0.85	0.90	0.75	0.99	0.96	n/a	_
Ca II-K ^b	0.83	0.86	0.83	0.86	0.77	0.96	n/a	_	_
SSN^a	0.85	0.88	0.84	0.88	0.75	n/a	_	_	_
$S_{\rm vel}$	0.80	0.79	0.79	0.77	n/a	_	_	_	_
$S_{\rm ph, composite}$	0.97	0.99	0.97	n/a	_	_	_	_	_
S ph, RED	0.96	0.95	n/a	_	-	_	_	_	_
$S_{\rm ph, GREEN}$	0.97	n/a	_	_	-	_	_	-	-
S ph BLUE	n/a	_	_	_	_	_	_	_	_

^{*a*} the total sunspot number

^b the Ca II-K line emission index

^c the 10.7-cm radio flux

^{*d*} the absolute mean magnetic field

- S_{ph} and S_{vel} well correlated with other activity indices
- Photometric S_{ph} shows higher correlation than velocity S_{vel}
- GOLF: in red-wing configuration during maximum of Cycle 23
 - Red-wing period: lower values of S_{vel} compared to blue wing
 - Observing heights in solar atmosphere (Jimenez-Reyes et al., 2007):

Blue wing	Red wing
322 km	480 km

Wavelength dependence of S_{ph}

- S_{ph} of the blue, green, and red channels of VIRGO/SPM observations
- Different sensitivities between channels
 - Red channel: much reduced amplitude during maximum of activity

- Shorter wavelengths (blue at 402 nm) more favorable than longer wavelengths (red at 862 nm)
- Sensitivity ratios in agreement with amplitude (Frohlich et al. 1997) and gain (Jimenez et al. 1999) ratios of acoustic oscillations

SpaceInn deliverable D4.2

- A new manner to monitor solar activity
- 5 files are produced (in ASCII and FITS formats):
 - 4 for S_{ph} (VIRGO blue, green, red channels, and *Kepler*-like composite)
 1 for S_{vel} (GOLF)
- Products already available on the SpaceInn portal
- Files will be updated every ~ 4 months (5x27 days)

For GOLF $\mathrm{S}_{\mathrm{vel}}$ only

		-						
	Series index	Date (M/D/Y)	Sph, Svel	Duty cycle	•••	Flag (Blue W / Red W)	% of Red measureme	nts
Example of header:		Keyword INSTRUMENT	Description NT Source of the observations					
		P _{rot} FACTOR CADENCE LENGTH	Rotation period in day used to calculate the activity proxies Factor used to multiply to P_{rot} to define the length of the analyzed sub series Observational temporal cadence in seconds Length of the analyzed sub series in days					

SpaceInn deliverable D4.2

http://www.spaceinn.eu/data-access/photospheric-solaractivity-index-virgospm-sph/

+ Paper in preparation, Salabert et al. 2015