SMOS, how an ESA Earth Observation mission can contribute to Solar activity monitoring

Roberta Forte

SOLARNET Workshop "Sun in Science and Society"
11 - 15 September 2023 Venezia/Mestre, Italy

About SMOS

When: Launched in Nov. 2009

Target:

Land products
(soil moisture, Soil freeze/thaw state)
Sea products
(sea surface salinity, sea ice thickness, Sea surface wind speed)

Orbit:

sun-synchronous orbit (dusk-dawn 6am/6pm)

Payload:

L-band Microwave Imaging Radiometer with Aperture Synthesis (MIRAS)

About MIRAS Instrument

Passive microwave 2-D interferometric full polarization

 radiometer, operating at 1.413 GHz (freq. wavelength 21 cm at L-band) within the protected $1400-1427 \mathrm{MHz}$ band.

3 arms 120° apart with 23 equally spaced antennae each. Diameter 16.5 cm .

Sampling rate is 1.2 sec
A full polarimetry measurement is acquired
in four integration period i.e. 4.8 seconds.

Due to antenna size and freq. wavelength, the instrument's field of view (FoV) is large enough to includes full Earth-disk and part of the surrounding Sky including the Sun.

About MIRAS L1B data

Due to antenna size and freq. wavelength, the instrument's field of view (FoV) is large enough to includes full Earth-disk and part of the surrounding Sky including the Sun.

The ancillary parameters from the "Sun removal" algorithm available in the operational L1B v724 products can be used to derive the Sun Brightness Temperature for the entire Stokes vector (Sun BT)

Antenna spacing is 0.875 wavelengths. Part of the FoV is affected by aliasing.

Direct Sun signal appears as a replica in the SMOS image disturbing the sensing of Earth surface emission.
This signal is "removed" by the L1 processor, the result of this removal is annotated in L1B product.

SMOS Solar Flux daily product algorithm

Sun BT from

SMOS L1B data

- Data aggregation
semi-orbit merging on daily basis
- Filtering
(RFI, Eclipse, Sun position Front/Back,
Sun elev.angle threshold <0.2 rad)
- Earth-Sun distance correction
normalization to 1 AU

Correction for obliquity factor

$$
B T_{\text {Corr El. }}=B T / \cos \left(\frac{\pi}{2}-e\right)
$$

Where $e=\arccos \left(\sqrt{x i^{2}+e t a^{2}}\right)$

LUT (Look Up Table) Calibration
$B T_{\text {Corr }}^{\text {LUL. }}=B T_{\text {Corr } E l .} * \boldsymbol{m}+\boldsymbol{q}$

Resampling

linear interpolation for X and Y polarization to resample to a common timeline based on Snapshot Time

Computation of First half Stokes parameter
$\mathrm{BT}=I / 2=\frac{[B T(X p o l)+B T(Y p o l)]}{2}$
(representative measure of Sun BT)

- Orbital Data time selection
(from ANX to ANX)
- Moving window filter
(to remove outlier and burst)
- computation of Sun BT mean and std on orbit basis
conversion from Sun BT to Solar Flux
$S F=B T_{\text {CorEl }}^{\text {sun }} \frac{2 K_{b}}{\lambda^{2}} \Omega_{\text {Sun }}($ day $)$

SunFlux and SunBT Data distributed via ftp
Available from BoM to 'yesterday' File type: ASCII
SF and BT value for each single orbit, separated between Front and Back (semi-orbit data with $\sim 50 \mathrm{mins}$ cadence).

SMOS Sun Flux calibrated with L-Band Ground Radio Telescope references

- Good consistency between our inter-calibrated L-band solar flux reference and SMOS Mean Orbit value calibrated

SMOS Solar Radio Burst detection bulletin

- BT correction
- calibration
- resampling of $X, \mathrm{Y}, \mathrm{T} 3$, T4 polarizations
(Same as Sun Flux computation)

Energy Computation

comparison between Energy computed as Solar Flux Integral on specified Δt and Solar energy reference computed from mean solar flux
\rightarrow if difference exceed $4 \% \rightarrow$ possible RB

Estimate of burst peak time and duration

False positive check

compute Degree of Circular Polarization

 from Stokes parameters (with corrected BT):$$
\begin{aligned}
\text { DoCP }=V / I= & -{ }^{B T_{4}} / B T(X p o l)+B T(Y p o l) \\
& -1<D o C P<1
\end{aligned}
$$

SMOS Solar Radio Burst bulletin validation

SMOS RB detection verification:

- www.spaceweatherlive.com - solar flares detection
- www.solarmonitor.com - GOES X-rays observation
- www.swpc.noaa.gov - Events report (RBR)

Why SMOS for Solar flux?

Usage of these products as input for Earth Observation data, e.g. SMOS L2 sea surface salinity:

A data processing algorithm is already up and running on Serco RedLab machine and distributed to SMOS Data Payload Ground Segment to use SMOS derived Sun BT Auxiliary product as input for SMOS L2 sea surface salinity retrieval.

Solar radio bursts detection is

 useful as they impact SMOS L2 OS products data quality and availability

Sea Surface Salinity map during the Solar radio Burst event on 9 May 2023 - visible degradation

Why SMOS for Solar flux?

Possible application of SMOS solar flux in solar physics and space weather studies:

> Long coverage data: $13+$ years of observation \rightarrow suitable for Space Weather models
> Could be available in near-real time within 3 hours from acquisition
> Different temporal resolution:

- Orbital aggregation: $\mathbf{1 0 0}$ minutes \rightarrow suitable for Solar cycle studies and synergies with F10.7 for ionosphere/thermosphere modelling (proxy of solar activity)
- 4.8 seconds for Solar RB studies and synergies with Solar flare/CME monitoring/forecast

NOAA AR2936 produced an M1 flare (R1-Minor Radio Blackout) on 29Jan2022 at 23:32 UTC. Associated with asymmetric, full halo CME as observed in NASA/SOHO LASCO coronagraph imager.

Why SMOS for Solar flux?

Possible application of SMOS solar flux in solar physics and space weather studies:

Solar Flux in L-band \(\leadsto \begin{aligned} \& Useful to estimate
\& impact on GNSS\end{aligned}\)

07/09/2017
Polarimetric data set at L-band are useful to analyse circular polarization in Solar Radio Burst which impacts GNSS signal reception. (SMOS frequency is right in the middle of the two L1 and L2 GPS signal)

Correlation between amount of Solar flux at L-band and the speed, angular width and kinetic energy of the CME is helpful for CME impact assessment

Why SMOS for Solar flux?

- Possible usage of SMOS AUX in NeQuick model:
quick-run ionospheric electron density model, for transionospheric propagation applications.
NeQuick-G: adapted for Galileo real-time single-frequency users, to compute ionospheric delay corrections.
The model values depend on solar activity (given by monthly-mean sunspot number, solar radio flux F10.7), season and time.

The NeQuick package includes routines to evaluate the electron density along any ground-to-satellite straight line ray-path and the corresponding Total Electron Content (TEC) by numerical integration.

- Possible multimission applications: usage of SMOS_SUN_FLUX as input for Swarm products

SUN_FLUX product can be used for Swarm L2 models: Many of these models use F10.7 as proxy for solar EUV (main source of ionospheric ionization, and thus plasma density / conductivity in non-polar regions), with 3-months average.

Could be interesting to better describe the day-to-day variability of

- Solar quiet current (Sq);
- EEJ current (Equatorial ElectroJet, that uses equatorial electric field, 1 value per orbit);
- MIO Model (Model of non-polar daily geomagnetic variation caused by ionospheric currents, including their variability with season and solar flux);
- Etc...

THANK YOU!

