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The next generation 4m telescopes. DKIST

We require an instrument with large aperture,
not only to reach sufficient spatial resolution,
but also to collect enough photons for accurate
polarimetry. We also require the ability to
observe the Sun at many wavelengths
simultaneously, including in the near ultraviolet
and in the infrared, to resolve the three-
dimensional structure of the solar atmosphere,
and at high temporal resolution to resolve the
highly dynamic nature of the atmosphere. With
these requirements the DKIST will be the ideal
tool for magnetic remote sensing.

From DKIST web page 2




The next generation 4m telescopes. EST

With a 4.2-metre primary mirror, it will be
optimised for studies of the magnetic
coupling of the solar atmosphere. This will
require diagnostics of the thermal,
dynamic and magnetic properties of the
plasma over many scale heights, by using TN
multi-wavelength imaging, spectroscopy e a4
and spectropolarimetry. EST will specialise @ e

in high spatial and temporal resolution,
using several instruments simultaneously
to efficiently produce 2D spectral
information

From EST web page
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The goal of Space Weather Science

Space  weather is the physical and

Observation
Monitoring /

~ Analysis and
. modelling

phenomenological state of natural space
environments. The associated discipline aims,
through observation, monitoring, analysis and
modelling, at understanding and predicting the
state of the sun, the interplanetary and planetary
environments, and the solar and non-solar driven
perturbations that affect them; and also at
forecasting and nowcasting the possible impacts

= on biological and technological systems’
randing and prgdictmgn . | | ’
Unders trial environ € COST Action 724 ('extract of the Final Report’), 2017



http://www.senmes.es/pub/03COST724-Short.pdf
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SWE typical proxies and impacts

e Physical measurement: GOES X-ray flux in the 0.1-0.8 nm range

e Effects: Problems in HF radio and Navigation from minutes to hours, ... Flares

e Physical measurement: Flux level of >= 10 MeV particles
e Effects: radiation hazards, single event upsets, spacecraft charging, ...

e Physical measurement: Kp geomagnetic indices

e Effects: Auroras, Power blackouts, Navigation on HF communication
problems from hours to days, ...
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Timing of an
‘academic’ SWE event

The geomagnetic disturbance is out of
the time range of the Figure. It will
take place between 1 to 3 days after

the flare onset

(Anastasiadis+ 2019)
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Magnetic reconnection:
the central engine to produce a fl
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GOES X-ray flux in 1.0-8.0 A band (W m~2)
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GOES X-ray flux in 1.0-8.0 A band (W m~2)

SMOS 1.4 GHz (sfu)
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Eruptive versus confined flares i SWES
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SMOS 1.4 GHz (sfu)

GOES X-ray flux in 1.0-8.0 A band (W m~—2)
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AR1219: 6 X-class and 29 M-class from
October 18-29 (2014) -> all confined

(Chen+ 2015)
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I e o Confined 0 In principle, of course, it is the free magnetic energy stored
anor S W“* o give A% on he 5 ﬁ erte!
e e s roxes 19, 5 Gpert 0 ey in the corona of magnetically complex ARs and released during
o “ ha m Jhanne sed -2y and!
reconnect” i {u‘gﬂfﬁgﬁ‘x‘;‘m mg“:\o,‘ weer  a flare via magnetic reconnection that is the most relevant and
o Ve ‘;‘ M“;‘l\ urt\‘g‘;‘y KanzeWO0 " ber . . . .
it 3‘;‘3“&3 @ i e 207 7 direct physical quantity describing the process. However, to
ohd nes \—\“‘“ﬁ‘ pOnmE et se 017 7 Decel = s "
™ oy 1 -W;ax;uw.rcw % calculate the energy in flares and CMEs from observations is a
s et O e difficult task, and the uncertainties are an order of magnitude

Re | |a b | e (e.g., Emslie et al. 2005, 2012; Veronig et al. 2005). Estimates
of the magnetic energy of an AR and, even more specifically,

the free magnetic energy available to power flare/CME events
measurements of - - power flare/

are not directly accessible, as we cannot reliably measure the

g coronal magnetic field. Therefore, such estimates are usually

COronal magnetlc based on advanced three-dimensional coronal magnetic field
. . models, using the vector magnetic field measured in the
fl e | d dl€ €55€ nt Id | photosphere. However, the uncertainties of these estimates are
again up to an order of magnitude, depending on the input data

to gO d h €d d (e.g., Thalmann et al. 2008), model approach (e.g., De Rosa

et al. 2009), and possibly other factors (e.g., DeRosa
et al. 2015). (Tschernitz+ 2018)
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Radar and GNSS are polarization sensitive .. (2.
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Space Weather
Forecaster wish list
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An ‘academic’ SPE

(a)

Gradual SEP events
(CME shocks in corona
and IP space)

(Anastasiadis+ 2019)
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(Adapted from Temmer 2021)



But only a few times SPEs reach the ground

< C O 8 https:;//www.nmdb.eu/nest/gle_list.php
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Space Weather
Forecaster wish list And in case of an eruptive flare,

* To know the speed and direction of the CME
* To know the direction of the IMF

* To know if a flare will be eruptive or confined

»
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Space Weather

NEWS ARTICLE No Major Solar Flares but the Largest Geomagnetic
10.1002720155W001213 Storm in the Present Solar Cycle

Y. Kamide and K. Kusano
Citation:
Kamide, ¥., and K. Kusano (2015}, No

Major Solar Flares but the Largest . . .
Geomagnetic Storm in the Present Solar A severe geomagnetic storm, and the largest in solar cycle 24, occurred on 17-18 March 2015 without

Cycle, Space Weather, 13, doi:10.1002/ significant precursor X- or M-type solar flares. Figure 1 shows (first to fourth panels) solar wind variables,
20155W001213. auroral electrojets indices, and the Disturbance Storm Time (Dst) index associated with the event, which
was classified as a G4 (severe) level storm (http//www.swpc.noaa.gov/noaa-scales-explanation). Red
auroras were seen even from the northern part of Japan for first time during the present cycle, attracting
considerable interest by the media and general public. Some of the headlines in Japan are as follows:
Auroras came to northern Japan after 11 years (Asahi newspaper) and space weather prediction came off
and low-latitude auroras appeared (Yomiuri newspaper). Unfortunately, space weather agencies
worldwide, including the ones in the United States, Japan, and Europe failed to predict that a severe
geomagnetic storm would arrive at the near-Earth environment.

Solar disk precursors for eruptions (even

without flares) need to be determined

21



Space Weather * To know if a filament will erupt and when
Forecaster wish list And in case of filament eruption,

* To know the speed and direction of the CME
* To know the direction of the IMF

»
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An ‘academic’ geomagnetic storm

Solar wind Dynamic

pressure compress Key parameters in solar  wind-

the day-sid | :
maegnae»:[(_)ssl,piere By i magnetosphere coupling: IMF and Solar
\ I \vind Speed (and may be density)
. | Will be possible to estimate them from

§ solar observations?

Time

Southward IMF and large solar wind speed
contribute to the entrance of solar wind energy
to terrestrial magnetosphere by reconnection

23



B O

Universidad 5
de Alcalé SPACE WEATHER g

CME properties and solar radio fluence at 1.4 GHz
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Large-scale coronal propagating fronts (EIT waves)

Speeds of Fronts in EUVI (195 A) aoé 93 A) Data

ype Il bursts. We do not 00 ;ﬁan' t's'eé[? - Lisé}o(; '_1;15'00' 1200
find a g Correlation either between the speeds . p g
of LCPFs and CMEs in a subset of 86 LCPFs” (Nitta+2013)

(Nitta+ 2013) 25



Tracking magnetic field from the Sun to the solar wind

= Solar

Orbiter
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How next
generation 4m
telescopes

can help in these
tasks?




Description of a Singular Appearance seen in the Sun on
September 1, 1859. By R. C. Carrington, Esq.

While engaged in the forenoon of Thursday, Sept. 1, in
‘taking my customary observation of the forms and positions
of the solar spots, an appearance was witnessed which I believe
to be exceedingly rare. The image of the sun’s disk was,
as usual with me, projected on to a plate of glass coated with
distemper of a pale straw colour, and at a distance and under a
power which presented a picture of about 11 inches diameter.
I had secured diagrams of all the groups and detached spots,
and was engaged at the time in counting from a chronometer
and recording the contacts of the spots with the cross-wires
used in the observation, when within the arca of the great
north group (the size of which had previously excited general
remark), two patches of intensely bright and white light broke
out, in the positions indicated in the appended diagram by the
Ietters A and B, and of the forms of the spaces left white. My
first impression was that by some chance a ray of light had
‘penetrated a hole in the screen attached to the object-glass, by

which the general image is thrown into shade, for the bril-
liancy was fully equal to that of direct sun-light; but, by at
once interrupting the current observation, and causing the
image to move by turning the R.A. handle, I saw I was an
unprepared witness of a very different affair. I thereupon

It has beepamamegratifying to me to learn that our friend
Mr. Hodgsoto be observing the sun at his house at
Highgate on the same day, and to hear that he was a witness
of what he also considered a very remarkable phenomenon. I
have carefully avoided exchanging any information with that

gentleman, that any value which the accounts may possess may
be inereased by their entire independence.
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Carrington (1859)
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Conclussions

* Many open questions in the Space Weather Science still remains

* Next generation 4m solar telescopes, optimised for studies of the
magnetic coupling of the solar atmosphere, have an opportunity to
help providing magnetic field observations of solar activity
simultaneously in 2D in different solar layers by using multi-
wavelength imaging, spectroscopy and spectropolarimetry

* But for this purpose a “Priority Observation Programme” (POP)
should be stablished modifying the observing schedules and
implementing procedures for fast identification of the solar region of
interest to be observed (Open Data policy in POP?)




THANK

YOU

FOR
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ATTENTION!

And thank you to funding from MICINN (grant PID2020-119407GB-100/AEl/10.13039/501100011033)
and UAH (grant EPU-INV-UAH2021005) 31
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