

G332 Molecular Ring

Domenico Romano – PhD candidate

University of New South Wales

Overview Romano D. et al. in preparation

Galactic

Longitude

Galactic region: 332.6° > / > 332.0° $-0.2^{\circ} > b > 0.5^{\circ}$ Velocity range $-54 \text{ km/s} > V_{ISR} > -46 \text{ km}$ ¹³CO ¹²CO CI lines width ~7 km/s peaks at $V_{ISR} \sim -50$ km/s ¹³CO ^{12}CO G332 region at $V_{\text{LSR}} \sim -50 \ \text{km}\text{s}^{-1}$

Overview – moment maps

Overview - column density

A Multiband approach

IRAC – I1 I2 I4 bands

3.6µm 4.5µm 8.0µm

. photon

many many objects: (masers, HII regions, YSO, Dark Nebula, High energy phenomena...) for most of them no distance information

A multiband approach

Romano D. et al. in preparation

2015 Mopra Workshop

CO Mopra 8.0 µm Spitzer

870 µm Atlasgal

- Dust filamentary structures
- Could host very early stages of massive star formation
- InfraRed Dark Clouds IRDCs
- Polycyclic aromatic hydrocarbon
 (PAH) emission common in intense UV radiation field like
 MSF regions
- PAH emission located on the edge of HII regions and CI layers Leger & Puget 1984; Allamandola et al. 1985
- Molecular hydrogen, CR, Astrochemistry, distance and morphology

Dust Temperature profile PACS HiGAL Herschel Cold dust 70µm 350µm 250µm 160µm 500µm 00.166

Dust Temperature profile SPIRE HiGAL Herschel Cold dust 70µm 500µm 350µm 250µm 160µm

Dust Temperature profile

Herschel

Dust Temperature profile

Herschel

Dust Temperature profile

dust temperature dust column density Herschel data + CO surveys

dust filamentary structures

Galactic rotation curve McClure-Griffiths & Dickey for Inner Galaxy Brand & Blitz for Outer Galaxy

Galactic four-arm model parameters Vallée (2014)

Velocity range -53 km/s > V_{LSR} > -46 km/s Velocity peak ~ -50 km/s near: ~ 3.7 kpc

far: ~ 11.3 kpc

based on code Rebolledo D. & Braiding C.

SGPS HI survey

Mopra Survey (smoothed)

Romano D. et al. in preparation

The ¹²CO emission matches quite well the low emission region in the HI map.

the velocities profiles show a ¹²CO peak emission at the same velocity of the HI local minimum

G332 molecular ring region average intensity

near distance solution Ring at ~ 3.7 kpc

Inside the Scutum-Crux arm

ring mass estimate ~4 x 10⁵ solar masses

$$X_{CO} = 2.7 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s}$$

Dame, Hartmann and
Thaddeus (2001)

a little bit more...

CPA2006 (S52) – bubble

¹²CO moment zero map

classified as a complete close ring with multiple bubbles inside <R> = 2.75' l=332.412° b=0.048°

Churchwell et al. ApJ 2006

 $^{^{12}}$ CO slice profile along V_{LSR}

centered at ~ -49 km/s

is this structure related to the S52 bubble?

further investigations are ongoing...

Romano D. et al. in preparation

The Ring¹²CO

coming soon in the G332 region...

- Improve the physical characterisation of the cloud
- Investigate its dynamics and morphology
- Better understanding of the Dust structures distribution

with intensive use of data visualization tools Javascript 3d.js Aladin Processing Three.js VR implementation python

Thank you and Thanks to Mopra

domenico.romano@student.unsw.edu.au