A comparison of solar image restoration techniques for SST/CRISP data

Mats Löfdahl

Institute for Solar Physics Stockholm University

Coimbra Solar Physics Meeting 6 October 2015

モトィモト

A SOLARNET project

CRISP image formation

- Image restoration
- Preliminary data and processing

Plans

WP 50.1.3 Image restoration

"improving the accessibility and characterization of both speckle and MFBD-based methods"

CRISP setup

- All cameras synchronized through common shutter
- Prefilter before WBBS ⇒ NB is within WB
- FPIs in telecentric setup
- WB and NB re-imaging systems make identical beams on cameras
- PD data collected, but PD camera has problems

イロン 不通 とう アイロン

Sar

- Ground layer seeing
- Various optical calibrations

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP

э

 Telescope and detectors

- Scattering
- High altitude
- Ground layer seeing
- Various optical calibrations

CRISP optics

 Instrumental polarization

- detectors
- Ground layer seeing
- Various optical calibrations

- Scattering
- High altitude
 - seeing

- CRISP optics
- Instrumental

- Telescope and detectors
- Ground layer seeing
- Various optical calibrations

- Scattering
- High altitude
 - seeing

- CRISP optics
- Instrumental polarization

- Telescope and
 detectors
- Ground layer seeing
- Various optical calibrations

- Scattering
- High altitude
- seeina

- CRISP optics
- Instrumental polarization

∃ ► < ∃ ►</p>

Seeing – ground layer

- Distorts wavefront
- Space invariant (isoplanatic)
- Kolmogorov statistics
- Fried's $r_0 \propto \lambda^{6/5}$
- Wavefront RMS: $\sigma_{\phi} \propto (D/r_0)^{5/6} \propto D^{5/6}/\lambda$
- Strehl ratio: $s \approx \exp\{-\sigma_{\phi}^2\}$
- $t_{\rm exp} \lesssim 10 \ {
 m ms}$
- $t_{
 m decorr} \approx 50 \
 m ms$
- AO flattens wavefront
- AO modifies statistics

Seeing – ground layer with AO

- Distorts wavefront
- Space invariant (isoplanatic)
- Kolmogorov statistics
- Fried's $r_0 \propto \lambda^{6/5}$
- Wavefront RMS: $\sigma_{\phi} \propto (D/r_0)^{5/6} \propto D^{5/6}/\lambda$
- Strehl ratio: $s \approx \exp\{-\sigma_{\phi}^2\}$
- $t_{\rm exp} \lesssim 10 \ {
 m ms}$
- $t_{
 m decorr} \approx 50 \
 m ms$
- AO flattens wavefront
- AO modifies statistics

Seeing – high altitude

- Anisoplanatic
- Geometric distortions
- Space variant blurring
- Space invariant AO residuals
- Space variant statistics after AO correction

6/19

< ロ ト < 同 ト < 三 ト < 三 ト

Perfect correction of 36 KL modes restores resolution but not contrast

Can be compensated for by use of atmospheric statistics!

Sources

Scharmer & Löfdahl (2010): High-order seeing (~10%, depends on r₀)
Scharmer et al. (2011): Most straylight ~1" wide.

Löfdahl & Scharmer (2012): Ghost images (~1%), post-focus scattering (~0.1%, 30"), DM high-order (fixed)

Scharmer (priv. comm.):

Anisoplanatism (\sim 50%, depends on r_0 at high altitude and zenith distance)

Match 5380 C I line profiles by degrading synthetic data with 60% straylight, 1".2 wide.

Straylight amount also constrained by umbral intensity.

Sources

Scharmer & Löfdahl (2010): High-order seeing (~10%, depends on r_0) Scharmer et al. (2011): Most straylight ~1" wide.

Löfdahl & Scharmer (2012): Ghost images (~1%), post-focus scattering (~0.1%, 30"), DM high-order (fixed)

Scharmer (priv. comm.):

Anisoplanatism (\sim 50%, depends on r_0 at high altitude and zenith distance)

Post focus straylight: target with 6 holes at primary focus

Sources

Scharmer & Löfdahl (2010): High-order seeing (~10%, depends on *r*₀) Scharmer et al. (2011): Most straylight ~1" wide.

Löfdahl & Scharmer (2012): Ghost images (~1%), post-focus scattering (~0.1%, 30"), DM high-order (fixed)

Scharmer (priv. comm.):

Anisoplanatism (\sim 50%, depends on r_0 at high altitude and zenith distance)

Modest assumptions:

- 1 meter telescope
- *r*₀ = 50 cm at *h* = 8 km
- 60° zenith distance
- Short exposures

Dramatic conclusions:

- Isoplanatic angle 1".3
- Strehl ratio 0.44!

Sources

Scharmer & Löfdahl (2010): High-order seeing (~10%, depends on r₀)
Scharmer et al. (2011): Most straylight ~1" wide.

Löfdahl & Scharmer (2012): Ghost images (~1%), post-focus scattering (~0.1%, 30"), DM high-order (fixed)

Scharmer (priv. comm.): Anisoplanatism (\sim 50%, depends on r_0 at high altitude and zenith distance)

Drift scans with science cameras, fit limb darkening + straylight PSF

Sources

Scharmer & Löfdahl (2010): High-order seeing (~10%, depends on r₀)
Scharmer et al. (2011): Most straylight ~1" wide.

Löfdahl & Scharmer (2012): Ghost images (~1%), post-focus scattering (~0.1%, 30"), DM high-order (fixed)

Scharmer (priv. comm.):

Anisoplanatism (\sim 50%, depends on r_0 at high altitude and zenith distance)

Replaced AO and tip-tilt mirrors before 2015 season. Granulation at disk center, 630.2 nm Fe I, 11.5% RMS contrast.

MHD: should be 14.5%

Don't expect image restoration to deliver MHD contrasts!

Sources

Scharmer & Löfdahl (2010): High-order seeing (~10%, depends on r₀)
Scharmer et al. (2011): Most straylight ~1" wide.

Löfdahl & Scharmer (2012): Ghost images (~1%), post-focus scattering (~0.1%, 30"), DM high-order (fixed)

Scharmer (priv. comm.):

Anisoplanatism (\sim 50%, depends on r_0 at high altitude and zenith distance)

Image restoration

- Atmosphere convolves object *f* with PSFs s_i
- We need to deconvolve images d_i (implicitly or explicitly)
- But we don't know the PSFs!

イロト イポト イヨト イヨト

э

Sac

Image restoration

- Atmosphere convolves object *f* with PSFs s_i
- We need to deconvolve images d_i (implicitly or explicitly)
- But we don't know the PSFs!

Multi-Frame Blind Deconvolution (MFBD)

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Multi-Frame Blind Deconvolution (MFBD)

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Multi-Frame Blind Deconvolution (MFBD)

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Multi-Frame Blind Deconvolution (MFBD)

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- 4. Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Multi-Frame Blind Deconvolution (MFBD)

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Multi-Frame	Blind	Deconvolution
(MFBD)		

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Multi-Frame Blind Deconvolution (MFBD)

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Multi-Frame Blind Deconvolution (MFBD)

Model fit to image data

- Image formation model: image = object * PSF + noise, PSF ⇐ pupil phase = wavefront shape
- 2. Parameterize pupil phase
- 3. Constrain phase parameters using multiple exposures, phase diversity, etc.
- Fit estimated object * PSFs to observed images by minimization of error metric.
- NB data included in model, more constraints ⇒ Multi-Object MFBD

Speckle Interferometry (SI) + Deconvolution (SD)

WB object Fourier amplitude:

- 1. Estimate *r*₀ from statistical sample
- 2. Atmospheric (+AO) model \Rightarrow TF
- 3. Correct average Fourier amplitudes for TF

WB object Fourier phase:

- 1. Differential phase information that does not average to zero.
- 2. Build phase estimate from Fourier domain origin.

- 1. Restored WB image + original WB data \Rightarrow PSFs
- 2. Deconvolve NB images

Previous comparisons

Paxman et al. 1996: Pre-AO SVST data, two PD codes and SI.

Puschmann & Beck 2011: VTT GFPI data, MOMFBD and Göttingen SI+SD

Bellot Gonzalez et al. 2014: Real and simulated VTT data, MOMFBD and Speckle (SOLARNET milestone)

Hoch 2014: Simulated and real GREGOR data, KISIP and MOMFBD

Previous comparisons

Paxman et al. 1996: Pre-AO SVST data, two PD codes and SI.

Puschmann & Beck 2011: VTT GFPI data, MOMFBD and Göttingen SI+SD

Bellot Gonzalez et al. 2014: Real and simulated VTT data, MOMFBD and Speckle (SOLARNET milestone)

Hoch 2014: Simulated and real GREGOR data, KISIP and MOMFBD

Previous comparisons

Paxman et al. 1996: Pre-AO SVST data, two PD codes and SI.

Puschmann & Beck 2011: VTT GFPI data, MOMFBD and Göttingen SI+SD

Bellot Gonzalez et al. 2014: Real and simulated VTT data, MOMFBD and Speckle (SOLARNET milestone)

Hoch 2014: Simulated and real GREGOR data, KISIP and MOMFBD

Previous comparisons

Paxman et al. 1996: Pre-AO SVST data, two PD codes and SI.

Puschmann & Beck 2011: VTT GFPI data, MOMFBD and Göttingen SI+SD

Bellot Gonzalez et al. 2014: Real and simulated VTT data, MOMFBD and Speckle (SOLARNET milestone)

Hoch 2014: Simulated and real GREGOR data, KISIP and MOMFBD

Two methods, algorithms and software

Speckle

- KISIP Speckle Interferometry (von der Lühe 1987), current C++ implementation (wöger).
- AO corrected calibrations for Zernike modes (Wöger 2007), now more general program exists.
- Decorrelation model for Zernike modes (Molodij 1997), now generalizing this for arbitrary modes ("Soon, don't worry").
- Speckle Deconvolution: (Keller & von der Lühe 1992), current IDL implementation (Mikurda 2006)

MOMFBD

• Phase Diversity (Löfdahl &

Scharmer 1994)

- MFBD algorithm (Löfdahl 2002)
- MOMFBD Multi-Object and C++ implementation (van Noort et

イロト 不得 トイヨト イヨト 二日

al. 2005)

Two methods, potential problems

Speckle

- Kolmogorov statistics true?
- AO correction modifies statistics – how well do calibrations work?
- Anisoplanatism more calibrations

• ...

MFBD

- Model mismatches
- Fit depends on data quality and object contrast
- Compensation for high-order wavefront modes

イロト イポト イヨト イヨト

3

12/19

Anisoplanatism

• ...

CRISP data from 2015-04-05

< ロト < 同ト < ヨト < ヨト

Sar

AO calibration data

Efficiencies

- 2 AO log files, each 30 s
 - Granulation at disk center
 - Variable seeing
 - DM voltages @ 2 kHz
 - SH shifts @ 2 kHz

•
$$\beta_i = \sqrt{\sigma_{i,\text{res}}^2 / \sigma_{i,\text{orig}}^2}$$

- Variation around mean for low order modes
- *r*₀ dependence for higher order modes

TH 1.

AO calibration data

Efficiencies

- 2 AO log files, each 30 s
 - Granulation at disk center
 - Variable seeing
 - DM voltages @ 2 kHz
 - SH shifts @ 2 kHz

•
$$\beta_i = \sqrt{\sigma_{i,\text{res}}^2 / \sigma_{i,\text{orig}}^2}$$

- Variation around mean for low order modes
- *r*₀ dependence for higher order modes

∃ ► 4 Ξ

Image: A matrix

AO calibration data

Efficiencies

- 2 AO log files, each 30 s
 - Granulation at disk center
 - Variable seeing
 - DM voltages @ 2 kHz
 - SH shifts @ 2 kHz

•
$$\beta_i = \sqrt{\sigma_{i,\text{res}}^2 / \sigma_{i,\text{orig}}^2}$$

- Variation around mean for low order modes
- *r*₀ dependence for higher order modes

크 > 《 크

AO calibrations

Processed using VTT calibrations

- Not using SST calibrations yet.
- Not as wrong as you might think (self-correcting to some degree) but still not satisfactory.
- No proper model for decorrelation with distance from lock point yet.

15/19

< 一型

2015-04-05 15:39, WB 6302

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06 16 / 19

<ロト < 回ト < 回ト < 回ト

Sac

Single pixel row through lower part of spot

- Much higher contrast in speckle restored image
- Resolution about the same
- Speckle contrast varies with r₀
- Wrong calibrations but needs to be looked out for

- Much higher contrast in speckle restored image
- Resolution about the same
- Speckle contrast varies with r₀
- Wrong calibrations but needs to be looked out for

RMS contrast measured in granulation below the spot

- Much higher contrast in speckle restored image
- Resolution about the same
- Speckle contrast varies with *r*₀
- Wrong calibrations but needs to be looked out for

프 🖌 🖌 프

RMS contrast measured in granulation below the spot

- Much higher contrast in speckle restored image
- Resolution about the same
- Speckle contrast varies with r₀
- Wrong calibrations but needs to be looked out for

프 🖌 🖌 프

2015-04-05 15:39, NB line core 6301 – 700 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

2015-04-05 15:39, NB line core 6301 – 342 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

2015-04-05 15:39, NB line core 6301 – 304 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

2015-04-05 15:39, NB line core 6301 – 266 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

2015-04-05 15:39, NB line core 6301 – 228 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

2015-04-05 15:39, NB line core 6301 – 190 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

2015-04-05 15:39, NB line core 6301 – 152 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

Sac

2015-04-05 15:39, NB line core 6301 – 114 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

Sac

2015-04-05 15:39, NB line core 6301 – 076 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

イロト イポト イヨト イヨト

2015-04-05 15:39, NB line core 6301 – 038 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

< ロ ト < 同 ト < 三 ト < 三 ト

2015-04-05 15:39, NB line core 6301 + 000 mÅ

Mats Löfdahl (Institute for Solar Physics) Comparison of image restoration for CRISP Coimbra 2015-10-06

Plans

Conclusions

- Integrate KISIP and SD into CRISPRED
- We want to compare "state of art", only quick code changes \Rightarrow make processing that is not core algorithm more similar. (Subfield size, mosaicking, noise filtering, etc.)
- Initial comparisons of several versions of restored images
 - Speckle with different calibrations?
 - MOMFBD different numbers of modes, different NB weights?
 - Phase Diversity?
- Speckle vs. MOMFBD: contrasts and power spectra, PSFs, line profiles
- For a few selected scans:
 - Atmospheric inversions
 - Evaluate artifacts that matter for interpretation

ヨトィヨト