Numerical simulations of dynamic phenomena in the solar corona

T. Török, V.S. Titov, Z. Mikić, C. Downs, R. Lionello, J.A. Linker, J.E. Leake, M.G. Linton

XRT Ti_Poly

/ (km/s) 220.0

Time=3.35

CSPM, 2015 October 5-9, Coimbra, Portugal

MHD simulations

- formulated as initial boundary-value problem:
 - system of differential equations (single-fluid MHD)
 - set of boundary conditions (sometimes well constrained by observations)
 - initial state (less well constrained) → often ad-hoc
- have been evolving significantly in recent years

(resolution, complexity of physics included, use of observed data, etc.)

still far from covering real complexity & enormous range of length scales

- no self-consistent model that includes all relevant layers of the sun
- → no inclusion of microphysics yet (reconnection, particle acceleration)

Large-scale transient events in the corona

CME

CME impact at Earth

Coronal jets

- solar corona exhibits a variety of transient dynamic phenomena
- two examples: <u>coronal mass ejections</u> (CMEs) and <u>coronal jets</u>
- some (still) open questions:
 - (1) how are CMEs initiated and driven?
 - (2) how can we predict their onset and impact at Earth?
 - (3) how do jets form & how do they contribute to the solar wind?

MHD simulations can help us to answer these questions

CMEs (solar eruptions)

- CMEs are one observational manifestation of large-scale <u>solar eruptions</u> (together with flares and prominence/filament eruptions)
- they are the main driver of <u>space weather</u> disturbances at Earth
- basic eruption-scenario ("magnetic explosion") well established, but:
 - initiation, driving, and interplanetary evolution not yet well known
 - reliable predictions of onset and impact not yet possible

Numerical (MHD) simulations of solar eruptions

• can be (roughly) divided into two groups:

idealized: limited 2D/3D domain; idealized fields; simple or no energy equation

"realistic": full corona; real magnetograms; thermodynamic MHD; solar wind

• both approaches have pros and cons:

idealized: simplified configurations; limited direct comparison with observations but: fast \rightarrow parametric studies; isolate physical mechanisms

"realistic": complex; time-consuming; expensive but: comparable to observations; more complete physics; potentially predictive

What triggers the onset of an eruption ?

Tether Cutting: "runaway" reconnection

Driven Flux Rope: photospheric I injection & hoop force

Magnetic Breakout: unstable arcade, triggered (& driven?) by reconn.

Flux Rope Catastrophe: end point in equil. sequ. & jump

Flux Cancellation at neutral line forms flux rope

Flux Rope Instability: ideal MHD instability (kink & torus instab.)

mass loading Seaton *et al.*(2011)

solar tornados Su *et al.*(2012)

flux feeding Zhang *et al.*(2014)

tilt instability Keppens *et al.*(2014)

- idealized MHD simulations helped to substantiate suggested onset mechanisms
- <u>but</u>: quantitative onset criteria still not well known & new ideas still emerge

we need: more parametric studies using simple, idealized models

What **drives** an eruption (instability vs. reconnection)?

• numerical simulations helped us to pin down the main <u>acceleration</u> mechanisms:

torus instability + flare reconnection

- open question: which one is dominant under which circumstances ?
 - difficult to separate (mechanisms closely coupled)
 - timing & respective contribution likely depends on initial magnetic configuration

Thermodynamic MHD modeling of the corona

Lionello et al. (2009)

- calculate potential field from (filtered) synoptic map
- MHD relaxation to steady-state including solar wind
- advanced energy transfer: parallel TC, radiative losses, (empirical) coronal heating
 - → required to model CHs, quiet sun, and ARs simultaneously
- latest improvements: wave-turbulence & two-temperature models

(semi-)realistic coronal magnetic field & plasma distributions

Example: solar corona during November 13, 2012 eclipse

relaxed magnetic field

limitations:

- magnetic field changes rapidly
 - → include flux evolution models
- streamers less inflated in model
 - → energize source regions

synthetic polarization brightness image (Queensland, Australia - C. Emmanoulidis & M. Druckmüller)

Thermodynamic MHD simulation of the Bastille Day event

converging flows

Thermodynamic MHD simulation of the Bastille Day event

- synthetic satellite images allow direct comparison with observations
- flare arcade and halo-CME morphologies qualitatively reproduced
- CME speed ≈ 1500 km/s & kinetic energy ≈ 4 x 10³² ergs

provides quantities that cannot be observed directly (e.g. 3D magnetic field)

Heliospheric simulation of the Bastille Day event

model ICME core & electric currents in ecliptic plane

radial magnetic field at 1 AU

- flux-rope core structure preserved at 1 AU (still connected to surface)
- ICME arrives with rather scattered shape (non-synchronous eruption?)

Heliospheric simulation of the Bastille Day event

GSE coordinate system

 flux rope qualitatively reproduced (but: 15-20 degrees north of Earth!)

B field strength too low (≈ factor 2)

ICME too slow (≈ 6-8 h delay)

quantities at Earth very difficult to match with present models?

simulation data at 1 AU

Solar X-ray jets in polar coronal hole

SAO /NASA/JAXA/NAOJ

Cirtain et al. (2007)

Solar jets

Jet property			Instrument		
	$\mathbf{S}\mathbf{X}\mathbf{T}^1$	$\mathbf{X}\mathbf{R}\mathbf{T}^2$	$EUVI^3$	$\mathbf{COR1}^4$	AIA^5
Source region	Active region	Polar CH	Polar/Equat. CH		Polar/Equat. CH
Occurrence	\sim 17/month	\sim 60/day		\sim 15/day	
Duration [min]	2-600	5-40 (10)	20-40	< 20 - 120	21-46
Velocity [km/s]	10-1000 (200)	80-500 (160)	270-400	100-560 (270)	94-760
Length [Mm]	30-400 (150)	10-120 (18)	100 (one event)		63-188
Width [Mm]	5-100 (17)	3-12 (7)	25 (one event)		

Shimojo *et al.* (1996); Savcheva *et al.* (2007); Nistico *et al.* (2009, 2010); Paraschiv *et al.* (2010); Moschou *et al.* (2013)

- transient collimated eruptions (bright point + stalk)
- occur in open or semi-open magnetic field regions
- occur at different heights (chromosphere, TR, corona)
- often show signatures of twist (helical rotation)
- can produce signatures in white-light coronagraphs

Theoretical ideas

• basic scenario:

flux emergence into (semi-) open coronal field

→ current sheet formation → reconnection causes jet

- variations: "standard" and "blowout" jet (emerging flux rope erupts)
- recent ideas:

jets due to flux cancellation and/or "mini-eruptions" rather than emergence (e.g., Young & Muglach 2013; Sterling *et al.* 2015)

Numerical simulations

- most simulations consider flux-emergence scenario (except Pariat et al.)
- standard + blowout jets & rotation (helical jets) successfully modeled
- recently thermal conduction has been included (Fang et al., 2014)

not addressed yet:

- full thermodynamic modeling (conduction, radiation, coronal heating)
- possible contribution to solar wind (so far only small boxes considered)
- MHD modeling of observed events

Thermodynamic MHD modeling of jets including the solar wind

coronal domain: spherical grid spanning over 1-20 solar radii

- purely radial background magnetic field (6 G at surface) + solar wind
- simple (exponential) coronal heating + thermal conduction + radiative losses
- boundary-driven (coupling with flux-emergence simulation via electric fields)

First results (low corona)

1.549e+05

5.566e+04

2.000e+04

1.0e6 1.2e6

- "standard" jet produced (no "blowout" jet yet)
- peak jet temperature about 1.1 MK
- emission: bright point above surface & CS visible

First results (higher corona)

- "standard" jet effects corona at least up to several solar radii (yet to be quantified)
- jet-stalk signatures visible in synthetic white-light images
- quantitative analysis yet to be done

(see also recent work by J. Karpen, R. de Vore et al.)

Next steps

blowout jet on 22 July 2011 (Shen et al. 2012)

Sterling et al. (2015)

Cheung et al. (2015)

- investigate effects of, e.g., thermal conduction and field inclination
- simulate jet formation by flux cancellation & "mini-eruptions"
- modeling of observed events (so far only magneto-frictional simulation)

Outlook (some current & next steps)

- Adaptive mesh refinement
 improve modeling of reconnection, shocks, etc.
- Couple MHD and PIC (kinetic) codes → modeling of particle acceleration
- Couple FE or NLFFF & CME models

 more realistic pre-eruption configurations

→ simulate CMEs in real time

Summary

- MHD simulations are a powerful tool to model solar eruptions, but:
 - initiation, coupling & evolution of eruptions still not well understood
 - we cannot yet use simulations to predict eruption onset, interaction & impact
 - → more idealized simulation studies needed to:
 - better understand initiation and driving mechanisms
 - derive quantitative onset (instability) thresholds
 - → improve realistic simulations
 - need to become more efficient & accurate
 - extend models by, e.g., including observed flows & flux evolution

• other improvements: e.g. produce more realistic initial configurations by coupling to flux emergence simulations or NLFFF extrapolations