

Outline

- Discovery of magnetic fields on the Sun
- Measurements of magnetic field
- (Now well-known) properties of solar magnetic fields and opened questions
- Solar activity via synoptic maps
- Magnetic fields from different instruments
- Vector magnetic field measurements and helicity

Why do we need magnetic field observations?

Space weather: Planet habitability:

- Solar/stellar dynamo/cycles/nature of stellar magnetism
- Flare/CME activity
- Modeling solar/stellar wind
- Modeling topology of magnetic fields in solar and stellar

Pevtsov, A.A., Bertello, L., MacNeice, P. (2015) DOI: <u>10.1016/j.asr.2015.05.043</u>

Discovery of magnetic fields

- 1896 Zeeman effect discovered by Dutch physicist Pieter Zeeman
- 1870 line splitting (D-line), C.A. Young
- 1892 Some spectral lines broaden in sunspots (e.g., Cortie, A. L.)
- 1898 Vanadium lines broaden significantly in sunspots

Hinode

Discovery of magnetic fields

• 1905-06 — early tests for presence of magnetic field in sunspots by Hale (negative result).

1906 – Mitchell observation (C.A. Young PhD Advisor

5250 A - 2200 G 5781 A - 3160 G 6064 A - 2160 G 6137 A - 2690 G 6173 A - 2360 G

Mitchell (1906)

Hinode

First Observations of magnetic fields in Astrophysics

- 1907 improvements to spectroheliograms (H-alpha whirls)
- 1908 first measurements in astrophysics by G.E. Hale (Mount Wilson Observatory)
- Since 1917 regular daily observations of magnetic fields in sunspots

Nickolson suggested that helical appearance of H-alpha whirls may imply the presence of magnetic field, which stimulated Hale to revisit his previous attempt to measure magnetic field in sunspots.

Full disk magnetographs

- Early 1950th H. W. Babcock (Hale Laboratory telescope in Pasadena), after 1957 at MWO
- 1963-1968, X-Y servo plotter display
- Mount Wilson Observatory (MWO, 1967 – 2013)
- 1974-2013 (KPVT, 512ch, SP), VSM/SOLIS
- 1976 present (WSO)

Comparison of the polar magnetic field.

How do we measure magnetic fields

$$B = \frac{s \, \Delta x \, 10^{13}}{9.34 \, g \, \lambda^2}$$

MWO "sunspot drawings", CrAO (total field strength)

GONG, MWO, KPVT (LOS field)

Stokes Polarimeters: SOLIS/VSM, HMI/SDO (full vector) — magnetic field is derived via inversions

(Hale) Polarity and (Joy) tilt orientation

Hale et al. 1919 (1913-1917 - 3.7% irregular (non-Hale polarity) - vary between 1.4-6.3% Stenflo & Kosovichev (2012) - about 4%, Li and Ulrich (2012) - 6.5%-9.1%

Non-Hale polarity ARs

Stenflo & Kosovichev (2012) — presence of two toroidal fluxes with opposite orientation

Pevtsov & Longcope (1998), ; helicity (twist) — writhe

Lopez Fuentes et al (2003) — gradual rotation/transformation from non-Hale to
Hale orientation

Tilt orientation (Joy's law)

Zirin (1988) introduced term "Joy's Law"

Hale et al. (1919); Pevtsov et al (2014)

Fisher, Fan, Howard (1995)

Active region tilts using MWO data

Sunspot Area-flux relation

- Magnetic gas pressure balance
- One can use area (1876) as proxy for magnetic flux (1917)

gnes & Jensen (1960); Ringnes (1965); Tlatov & Pevtsov (2014); Nagovitsyn et al (2016)

Sunspot Area-Flux Long-Term Variations

- Two components in sunspot distribution (small-large sunspots)
- Indication of two dynamo layers in dynamo region?

Solar activity via Synoptic maps

August 1959

Atlas of solar magnetic fields, by Howard, R.; Bumba, V.; Smith, S. F.. Washington, DC (USA): Carnegie Institution of Washington, Publication No. 626, 1967

Super-synoptic maps

Total Flux

Polar Flux

Are polar fields (non-) radial? Ulrich Tran (2013) — poleward inclination, Petrie (2015) — near radial, Virtanen et al (2019) — equatorward inclination.

Magnetogram comparison

Pietarilla et al (2013)

Vector magnetograms (2003/2009present)

Side view Box 1 Box 2Top view B_r B_{θ} B_{ϕ}

Magnetic Helicity

 $\mathbf{F} \cdot \nabla \times \mathbf{F}$ - helicity density of **ve**ctor \mathbf{F} . Closed volume $(\mathbf{n} \cdot \mathbf{F} = 0)$

$$\nabla \times \mathbf{F} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\delta}{\delta z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix}$$

Magnetic Helicity

$$H_{m} = \int \mathbf{A} \cdot \mathbf{B} \, dD = (2\pi)^{-1} \Phi^{2} (T + W), \qquad \nabla \times \mathbf{A} = \mathbf{B}$$

$$\text{magnetic induction.}$$

$$H_{c} = \int \mathbf{B} \cdot \nabla \times \mathbf{B} \, dD \quad \underline{\text{Current Helicity}}$$

$$H_{k} = \int \mathbf{V} \cdot \nabla \times \mathbf{V} \, dD$$

Kinetic Helicity

Helicity proxies, relative helicity, etc.

<u>Cross-helicity</u>: cross-correlation between the turbulent velocity and magnetic field: $\langle u' \cdot b' \rangle$

Writhe and Twist

H = W+T

What is so important about magnetic helicity?

topological invariant

- conserves better than energy (due to inverse cascading), e.g., in laboratory plasma experiments (Ji et al, 1995):
 - energy dissipation rate: 4%—10.5%
 - helicity dissipation rate: 1.3%—5.1%
- Plays important role in dynamo, reconnection, topology, and stability of magnetic systems

$$H_m = \int \mathbf{A} \cdot \mathbf{B} \, dD = (2\pi)^{-1} \Phi^2 (T + W), \qquad \nabla \times \mathbf{A} = \mathbf{B}$$
(this flucture)

Pevtsov (2002)

Magnetic helicity from HMI and VSM vector observations

Decomposition of the vector magnetic field into toroidal and poloidal components (Pipin et al (2019):

$$\mathbf{B} = \mathbf{\nabla} \times (\hat{\mathbf{r}}T) + \mathbf{\nabla} \times \mathbf{\nabla} \times (\hat{\mathbf{r}}S) = \\ = -\frac{\hat{r}}{r} \Delta_{\Omega} S + \hat{\theta} \left(\frac{1}{\sin \theta} \frac{\partial T}{\partial \phi} - \frac{\sin \theta}{r} \frac{\partial F_S}{\partial \mu} \right) + \hat{\phi} \left(\sin \theta \frac{\partial T}{\partial \mu} + \frac{1}{r \sin \theta} \frac{\partial F_S}{\partial \phi} \right) \qquad B_r = -\frac{1}{r} \Delta_{\Omega} S, \\ B_{\theta} = \frac{1}{\sin \theta} \frac{\partial T}{\partial \phi} - \frac{\sin \theta}{r} \frac{\partial F_S}{\partial \mu},$$

 $B_{\phi} = \sin \theta \frac{\partial T}{\partial \mu} + \frac{1}{r \sin \theta} \frac{\partial F_S}{\partial \phi}$

To find unique solution, the following gauge is applied:

$$\int_{0}^{2\pi} \int_{-1}^{1} S d\mu d\phi = \int_{0}^{2\pi} \int_{-1}^{1} T d\mu d\phi = \int_{0}^{2\pi} \int_{-1}^{1} F_{S} d\mu d\phi = 0.$$

$$\mathbf{A} = \hat{\mathbf{r}}T + \mathbf{\nabla} \times (\hat{\mathbf{r}}S) = \mathbf{A}$$

$$\mathbf{A} = \hat{\mathbf{r}}T + \mathbf{\nabla} \times (\hat{\mathbf{r}}S) =$$

$$= \hat{\mathbf{r}}T + \frac{\hat{\theta}}{\sin \theta} \frac{\partial S}{\partial \phi} + \hat{\phi} \frac{\sin \theta}{r} \frac{\partial S}{\partial \mu}$$

S, T – scalar potentials, $F_{S=\partial(rS)/\partial r}$

Synoptic maps of helicity (CR2156)

Magnetic field and Helicity in Cycle 24

Magnetic helicity in cycle 24

Summary

- Magnetic fields on the Sun were discovered in 1908
- Simplistic measurements of magnetic field in sunspots still continue in two observatories
- Some properties of Hale-polarity rule and Joy's (active region tilt) law may still require explanation
- Magnetic fields from different instruments may differ significantly
- New era of vector magnetic field measurements and helicity more useful information and more questions