Forecasting the arrival of Coronal Mass Ejections: The Drag-Based Model

B. Vršnak, T. Žic, J. Čalogovć, M. Dumbović
Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia

THE MODEL

AIM: Prediction of ICME arrival
BASIC ASSUMPTION: Beyond ~20 solar radii the MHD "aerodynamic" drag caused by the interaction of ICME with solar wind, becomes the dominant force, so the equation of motion becomes:

$$
\ddot{r}=-\gamma(\dot{r}-w)|\dot{r}-w| .
$$

CONSEQUENCE: fast ICMEs are decelerated, slow are accelerated ($\dot{\boldsymbol{r}} \longrightarrow \boldsymbol{w}$).
PARAMETERS: In the simplest form, we assume $\boldsymbol{\gamma}, \boldsymbol{w}=$ const. The drag parameter γ depends on characteristics of both ICME and solar wind - the drag is stronger for broader, low-mass ICMEs in a high-density (slow) solar wind.

Running-difference images of the ICME take-off (LASCO/SoHO), providing the model input values $v_{0}\left(R_{0}, t_{0}\right)$.

ONLINE FORCAST TOOL
http://oh.geof.unizg.hr/CADBM/cadbm.php

CONCLUSION

DBM offers predictions of the ICME arrival for >90\% of events with an accuracy better than 24 h, and for $>50 \%$ of events better than 12h.

ACKNOWLEDGMENT

This work has been supported by Croatian Scientific Foundation under the project 6212 „Solar and Stellar Variability" (SOLSTEL).

