Forecasting the arrival of Coronal Mass Ejections: The Drag-Based Model

B. Vršnak, T. Žic, J. Čalogovć, M. Dumbović Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia

THE MODEL

AIM: Prediction of ICME arrival

BASIC ASSUMPTION: Beyond ~20 solar radii the MHD "aerodynamic" drag caused by the interaction of ICME with solar wind, becomes the dominant force, so the equation of motion becomes:

$$\ddot{r} = -\gamma \left(\dot{r} - w \right) |\dot{r} - w|$$

CONSEQUENCE: fast ICMEs are decelerated, slow are accelerated ($\dot{r} \rightarrow w$).

PARAMETERS: In the simplest form, we assume γ , w = const. The drag parameter γ depends on characteristics of both ICME and solar wind – the drag is stronger for broader, low-mass ICMEs in a high-density (slow) solar wind.

Running-difference images of the ICME take-off (LASCO/SoHO), providing the model input values $v_0(R_0, t_0)$.

ONLINE FORCAST TOOL

http://oh.geof.unizg.hr/CADBM/cadbm.php

CMI: take-off date: Gep CME take-off time: D0 I	CME take-off time: D0 Rg - starting radial distance of CME (Rg) 20	GML take-off date: Gep :: CME take-off time: D0_1	The D	rag-B
CME take-off clate: Gep CME take-off time: 00 1	CMI: fake-off clate: Gep CME take-off time: DO Rg - starting radial distance of CME (Rg) 20	CMI: fake-off clate: Gep CME take-off time: DO Rg - starting radial distance of CME (Rg) 20		
CME take-off time: 00	CME take-off time: D0 Rg - starting radial distance of CME (Rg) 20	CME take-off time: D0 Rg - starting radial distance of CME (Rg) 20		
	R ₀ - starting radial distance of CME (R _e)	R ₀ - starting radial distance of CME (R _e)		
v ₀ - speed of GME at R ₀ (km/s) [1000 γ - drag parameter (10 ⁻⁷ km ⁻¹) [1	γ-chag parameter (10 ⁻⁷ km ⁻¹)			

<u>Output:</u> CME arrival date & tme : 2011-9-11 13h:5m Travel brne: 61.08 h Transit speed (at 214 R_g): 542 km/s

CONCLUSION

DBM offers predictions of the ICME arrival for >90% of events with an accuracy better than 24 h, and for >50% of events better than 12h.

ACKNOWLEDGMENT

This work has been supported by Croatian Scientific Foundation under the project 6212 "Solar and Stellar Variability" (SOLSTEL).