THRUMMS: The Three-millimetre Ultimate Mopra Milkyway Survey

```
Completed survey within the 4th Quadrant - 300-360 deg lat +/- I deg.
\({ }^{12} \mathrm{CO}(\mathrm{I}-0),{ }^{13} \mathrm{CO}(\mathrm{I}-0), \mathrm{C}^{18} \mathrm{O}(\mathrm{I}-0), \mathrm{CN}(\mathrm{I}-0)\)
Pls: Barnes + Muller (Ufl and EA- observatory, Chile)
Co-Is: Indermuehle, Balthasar; O'Dougherty, Stefan N.; Lowe, Vicki; Cunningham, Maria; Hernandez, Audra K.; Fuller, Gary A.
Nguyễn, Hans; Nguyễn Lu'o'ng, Quang; Martin, Peter G.;Lo, Nadia; Motte, Frédérique
```

See also:
The Three-mm Ultimate Mopra Milky Way Survey. I. Survey Overview, Initial Data Releases, and First Results' - 2015,ApJ,812,6 (Barnes, Peter J.; Muller, Erik; Indermuehle, Balthasar; O'Dougherty, Stefan N.; Lowe, Vicki; Cunningham, Maria; Hernandez, Audra K.; Fuller, Gary A.)
and
The Three-mm Ultimate Mopra Milky Way Survey. II. Cloud and Star Formation Near the Filamentary Ministarburst RCW 106 2015,ApJ,812,7
(Nguyễn, Hans; Nguyễn Lu'o'ng, Quang; Martin, Peter G.; Barnes, Peter J.; Muller, Erik; Lowe, Vicki; Lo, Nadia; Cunningham, Maria; Motte, Frédérique; Indermühle, B.; and 3 coauthors)

With media releases (in the USA and Australia)
http://news.ufl.edu/articles/2015/10/peeking-into-our-galaxys-stellar-nursery-.php
http://www.abc.net.au/news/2015-10-21/milky-way-galaxy-star-forming-clouds/6861712
Data repository (DR III):
http://www. astro. ufl.edu/~peterb/research/thrumms/
http://alma-intweb.mtk.nao.ac.jp/~emuller/THRUMMS
Also (~end 2015) hosting at ATOA and EA-ALMA science portal for ALMA use (e.g. Single-dish calibration)

THRUMMS:

Survey within the 4th Quadrant - 300-360 deg lat +/- I deg.
${ }^{12} \mathrm{CO}(\mathrm{I}-0),{ }^{13} \mathrm{CO}(1-0), \mathrm{C}^{18} \mathrm{O}(\mathrm{I}-0), \mathrm{CN}(\mathrm{I}-0)$

Status:
This survey is complete

DR III in public domain (since 2010) DR IV to be released in a few weeks.

$$
\text { R:G:B - }{ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}, \mathrm{C}^{18} \mathrm{O}
$$

Barnes \& Muller et al.. ApJ, 2015

344°

DR IV prelim...

${ }^{12} \mathrm{CO}$ Filtered ('SAM') and moment 0 (Greyscale; linear 0:I $00 \mathrm{Kkms}^{-1}$)

DR IV prelim...

${ }^{12} \mathrm{CO}$ Filtered ('SAM') and moment 0 (Greyscale; linear 0: $100 \mathrm{Kkms}^{-1}$)

DR IV prelim...

${ }^{12} \mathrm{CO}$ Filtered ('SAM') and moment 0 (Greyscale; linear 0: $100 \mathrm{Kkms}^{-1}$)

ThruMMs survey outline

ThruMMS:

- Mopra Telescope: 22m, ~75-1 I6 GHz
- ${ }^{12} \mathrm{CO}(\mathrm{I}-0),{ }^{13} \mathrm{CO}(1-0), \mathrm{C}^{18} \mathrm{O}(\mathrm{I}-0), \mathrm{CN}(\mathrm{I}-0)$

Thrumms samples $>75 \%$ of ALL CO
Mass in the 3-4 Quadrants

- Latitude range: I. $0 \sim$ - 1.0 deg
- Longitude range: $360^{\circ}-300^{\circ}$
- Velocity range: - $200 \mathrm{~km} / \mathrm{s}-50-100 \mathrm{~km} / \mathrm{s}$
- Spatial resolution: $\sim 72^{\prime \prime}$

Species	Frequency	Resolution	RMS	RMS I km/s	RMS $5 \mathbf{k m} / \mathbf{s}$
12	115.271	$0.083 \mathrm{~km} / \mathrm{s}$	2.6 K	750 mK	330 mK
13	110.201	$0.085 \mathrm{~km} / \mathrm{s}$	1.4 K	400 mK	180 mK
C	109.782	$0.085 \mathrm{~km} / \mathrm{s}$	1.4 K	400 mK	180 mK
CN(I-0)	113.5	$0.083 \mathrm{~km} / \mathrm{s}$	1.8 K	510 mK	230 mK

[^0]
Generalized Science Drivers:

.High-resolution exploration of the Wide-field properties of Galactic-plane molecular clouds. GMC envelopes, velocity distributions, outflows, molecular column density.

$$
{ }^{12} \mathrm{CO}(1-0),{ }^{13} \mathrm{CO}(1-0), \mathrm{C}^{18} \mathrm{O}(1-0), \mathrm{CN}
$$

2
Tracing molecular component with optically thin(ner) molecular tracers: PDRs, Optical Depth, velocity dispersion, molecular excitation, molecular column density.
${ }^{13} \mathrm{CO}(1-0), \mathrm{C}^{18} \mathrm{O}(1-0), \mathrm{CN}(1-0)$
3. Tracing dense molecular component, gas depletion.
$\mathrm{C}^{18} \mathrm{O}(1-0), \mathrm{CN}(1-0)$
4
. Higher density Molecular component, Zeeman candidates.
CN(I-0)

Specific Science Drivers:

1. The Three-Dimensional Structure of the Southern Milky Way
2. Regional variations of ISM conditions \& impact on cloud profile
3. Star Formation Efficiency on Larger Scales
4. sEDs, Masses, and Luminosities of Dust Clouds

5

- Understanding and Characterising the Cloud Mass Function

6. The shape of Magnetic Fields (via zeeman-splitting of CN - ALMA)

ThrUMMs and MopraCO.

The scientific elements ofThruMMS might be looking familiar at this point.
and that's because they are....

More on this later

Observing strategy I:

Benchmark "normal" observing at I I 5 GHz:

1.5 hours for 5' $\times 5$ ' field yeilds $\sim 300 \mathrm{mK}$ RMS at 33 "' resolution

Fast mapping:

- Increased scanning \& survey rate $\times 8$
- (therefore reduced sampling rate by $\times 8$)
- per-channel sensitivity reduced only by sqrt(8) ~ 3 .

5' $\times 5$ ' field is $\sim 11 \mathrm{~min}, \sim 1.0 \mathrm{~K}$ RMS, $33^{\prime \prime}$ resolution

Beam-sampled Mapping:

- Increased linear scanning rate $\times 4$
- (survey rate increased by $\times 16$)
- per-channel sensitivity unchanged.
- (spatial resolution reduced by only ~ 2)
$5 ` \times 5 `$ field is $\sim 11 \mathrm{~min}, \sim 300 \mathrm{mK}$ RMS, I. I' resolution
"Very Fast Mapping"
- survey rate increased by $\times 32$
- per-channel sensitivity reduced by ~ 3.
- spatial resolution reduced by ~ 2

Benchmarks (for 5' $\times 5$ ' field):
~ 1.4 min, $\sim 1.0 \mathrm{~K}$ RMS, I I I' resolution

Observing strategy II: Active mapping:
 $$
\nu_{N}(e l)=v_{N}(90)\left(\frac{T_{s y s}(e l)}{T_{s y s}(90)}\right)
$$

Active mapping takes Tsys measurement prior to data-taking, and recomputes the sampling interval to ensure \sim homogenous sensitivity.

$$
\begin{aligned}
& v_{N}(90)=55 G H z\left(\sim 70^{\prime \prime}\right) \\
& T_{s y s}(90)=400 K
\end{aligned}
$$

(usually works, even in summer, number of repeat fields < 10%)

Tsys $=X$, sampling interval $=I$ (arbitrary values)

$$
\text { E.g.Tsys }=400 \mathrm{~K}
$$

Tsys $=\sqrt{ } 2 X$, sampling interval $=1 / 2$

$$
\text { E.g.Tsys }=565 \mathrm{~K}
$$

Line ratios on steroids. Rgb. -co,
Barnes \& Muller et al., ApJ, 20 I 5

344°

Line ratios on steroids. Tau and abundance
 Barnes \& Muller et al,. ApJ, 2015

$$
\frac{T_{13}}{T_{12}}=\frac{1-e^{-\tau_{13}}}{1-e^{-R_{13} \tau_{13}}}
$$

Assume LTE (Tex).
Empirically solve for Tau,

Red: ~low T and high Tex,
"warm and translucent".

Green~cyan/blue: ${ }^{13} \mathrm{CO}$ or $\mathrm{C}^{18} \mathrm{O}$ (or both) > average LOS ${ }^{12} \mathrm{CO}$
$\left({ }^{13} \mathrm{CO}, \mathrm{C}^{18} \mathrm{O}\right.$ are saturated, but not bright) - High tau, low Tex.
"cold and opaque".

Holistic views. Tex, Column density and Xco

Barnes \& Muller et al,. ApJ, 2015

TOP: ${ }^{12}$ CO Tau

MIDDLE: Ico
BOTTOM: Nco

$$
\mathrm{N}_{C O}=2.28 \times 10^{14} \mathrm{~cm}^{-2} \mathrm{~T}_{\mathrm{ex}}^{1.56} \int \tau d V
$$

$$
\mathrm{N}_{\mathrm{H} 2}=X_{\mathrm{col}} \mathrm{co}_{\mathrm{CO}}=\mathrm{R}_{12} \mathrm{~N}_{\mathrm{cO}}
$$

The dashed blue line \sim standard $X_{c o} / R I 2$ ratio Solid line is a rough power-law fit to the modal trend, suggesting a more universal X -factor ratio of $\sim 8-40 \times 10^{20}$
(See Dame et al, $200 \mathrm{I}, \sim 2 \times 10^{20} \mathrm{~cm}^{-2} \mathrm{Kkms}^{-1}$)

Holistic views. Column density and X_{co}

Barnes \& Muller et al., ApJ, 2015

Disentangling the third dimension:
 RCW 106 complex, and GMC 331.0+0.0

Nguyen et al,. ApJ, 2015

Disentangling the third dimension:
 RCW 106 complex, and GMC 331.0+0.0

Nguyen et al,. ApJ 2015

Cross collaborations:

SEDIGISM - PI F. Schuller

- CO(2-I) with field matched to ThrUMMS, resolution is superior: 20 "
- Wide ranging collaboration, relevance to Thrumms is radiative transfer. tau, optical depth, temperature, density, etc. etc.)

Nobyama GPS (Pls: Minamidani+Umemoto)

- Science goals are similar, ${ }^{12} \mathrm{CO},{ }^{13} \mathrm{CO}, \mathrm{C}^{18} \mathrm{O}$., resolution is superior: 20 "
- Ist+4th Quadrant complimentarity
- Better statistics of similar environments
..also planned and formulated: CO3-2 in the Ist quadrant w/ JCMT
(Pl:T. Moore, see also Dempsey et al, 20 I3)
.. in discussion (EA-ALMA) ASTE CO(3-2) in 4th quadrant
(we'll have fully Rad transf input for ${ }^{12} \mathrm{CO}$ I transitions, I -0, 2-I, 3-2)

ThrUMMs and MopraCO.

Data of this region (ThrUMMS field) already exist, and are available at a resolution useful to MopraCO

This is the area proposed described by MopraCO (unreviewed) - C. Braiding slides 6, 37.

This is the net unique contribution to science from mopraCO (8 years and $\$ 93 \mathrm{k}$ public money).

AN OPEN PROPOSAL TO MOPRACO:

MopraCO spends $\sim 67 \%$ of its time re-walking already-explored territory. This benefits noone.

Over 8 years, (past+future), mopraCO could survey $0.25 \times 120 \times 8 \sim 240$ sq deg (or propotionally, in whatever time is available...) l.e. - change the field. Save time, money and integrity.

High(ish)-latitude CO clouds $(\||>|)$ are in a \sim different environment to $\|<1$:
less cluttered velocity structure, CO/I3CO ratio is less affected by optical depth etc.
'magnetic loop footprints' - e.g. Fukui et al, 2006: Chemistry, fluid dynamics, Vel, Temp, density distribution.
Spitzer bubbles - e.g. Beaumont \& Williams (JCMT), 2008
Chiminey walls \& vents - e.g. GSH 277+00+36 (Dawson et al, 2010)

FINALLY - A RANT.

By appealing to public funding via kickstarter, Mopra CO have bypassed external expert peer review. This is okay in some cases.. but generally:

This style of fund sourcing enters a new model where ethical use of public funding and efficient production of unique science that can only be self-policed.

I would not say that has happened in this case, from the very earliest stage.

Presently, only $\sim<33$ c of each kickstarter dollar goes to unique science. This could be, and should bel00\%. Even worse: at this point, well-meaning kickstarter supporters have not been informed that the goals of MopraCO can already be realised NOW without their contribution,
....RANT ASIDE - HERE IS A SOLUTION..
ThrUMMS has data, but few personel.
MopraCO has lots of people, but want data....
ThrUMMS wants more data too (just not of the same thing all over again...)

Solution: change the field, share the effort (and please communicate!)

In 2016... actually $<=2015$

Anything within 300-360 deg lon, +/- 1 deg lat
http://www.astro.ufl.edu/~peterb/research/ thrumms/rbank/

[^0]: *CN has 9 hyperfine transtions, 5 of which are measured in the band ('stacking' will improve S/N by sqrt(5))
 **Naturally, improved RMS can be obtained at the expense of velocity resolution, or even spatial resolution.

