THRUMMS : The Three-millimetre Ultimate Mopra Milkyway Survey

Completed survey within the 4th Quadrant - 300-360 deg lat +/- 1 deg. ¹²CO(1-0), ¹³CO(1-0), C¹⁸O(1-0), CN(1-0)

Pls: Barnes + Muller (Ufl and EA- observatory, Chile) Co-Is: Indermuehle, Balthasar; O'Dougherty, Stefan N.; Lowe, Vicki; Cunningham, Maria; Hernandez, Audra K.; Fuller, Gary A. Nguyễn, Hans; Nguyễn Lu'o'ng, Quang; Martin, Peter G.;Lo, Nadia; Motte, Frédérique

See also:

The Three-mm Ultimate Mopra Milky Way Survey. I. Survey Overview, Initial Data Releases, and First Results' - 2015, ApJ, 812, 6 (Barnes, Peter J.; Muller, Erik; Indermuehle, Balthasar; O'Dougherty, Stefan N.; Lowe, Vicki; Cunningham, Maria; Hernandez, Audra K.; Fuller, Gary A.)

and

The Three-mm Ultimate Mopra Milky Way Survey. II. Cloud and Star Formation Near the Filamentary Ministarburst RCW 106 - 2015, ApJ, 812, 7

(Nguyễn, Hans; Nguyễn Lu'o'ng, Quang; Martin, Peter G.; Barnes, Peter J.; Muller, Erik; Lowe, Vicki; Lo, Nadia; Cunningham, Maria; Motte, Frédérique; Indermühle, B.; and 3 coauthors)

With media releases (in the USA and Australia)

http://news.ufl.edu/articles/2015/10/peeking-into-our-galaxys-stellar-nursery-.php http://www.abc.net.au/news/2015-10-21/milky-way-galaxy-star-forming-clouds/6861712

Data repository (DR III): http://www.astro.ufl.edu/~peterb/research/thrumms/ http://alma-intweb.mtk.nao.ac.jp/~emuller/THRUMMS Also (~end 2015) hosting at ATOA and EA-ALMA science portal for ALMA use (e.g. Single-dish calibration)

THRUMMS:

Survey within the 4th Quadrant - 300-360 deg lat +/- 1 deg. ¹²CO(1-0), ¹³CO(1-0), C¹⁸O(1-0), CN(1-0)

Status: **This survey is complete**

DR III in public domain (since 2010) DR IV to be released in a few weeks.

R:G:B - ¹²CO, ¹³CO, C¹⁸O

3440

DR IV prelim...

¹²CO Filtered ('SAM') and moment 0 (Greyscale; linear 0:100 Kkms⁻¹)

DR IV prelim...

¹²CO Filtered ('SAM') and moment 0 (Greyscale; linear 0:100 Kkms⁻¹)

:40

Galactic Longitude

320

DR IV prelim...

¹²CO Filtered ('SAM') and moment 0 (Greyscale; linear 0:100 Kkms⁻¹)

ThruMMs survey outline

ThrUMMS:

- Mopra Telescope: 22m, ~75-116 GHz
- ¹²CO(1-0), ¹³CO(1-0), C¹⁸O(1-0), CN(1-0)
- Latitude range: $1.0 \sim -1.0 \text{ deg}$
- Longitude range: 360°-300°
- Velocity range: -200 km/s 50-100 km/s
- Spatial resolution: ~72"

Thrumms samples > 75% of ALL CO Mass in the 3-4 Quadrants

Species	Frequency	Resolution	RMS	RMS Ikm/s	RMS 5km/s
12	5.27	0.083 km/s	2.6 K	750 mK	330 mK
13	110.201	0.085 km/s	1.4 K	400 mK	180 mK
С	109.782	0.085 km/s	1.4 K	400 mK	180 mK
CN(I-0)	3.5	0.083 km/s	1.8 K	510 mK	230 mK

*CN has 9 hyperfine transtions, 5 of which are measured in the band ('stacking' will improve S/N by sqrt(5)) **Naturally, improved RMS can be obtained at the expense of velocity resolution, or even spatial resolution.

Generalized Science Drivers:

•High-resolution exploration of the Wide-field properties of Galactic-plane molecular clouds. GMC envelopes, velocity distributions, outflows, molecular column density.

¹²CO(1-0),¹³CO(1-0), C¹⁸O(1-0),CN

Z Tracing molecular component with optically thin(ner) molecular tracers: PDRs, Optical Depth, velocity dispersion, molecular excitation, molecular column density. ¹³CO(1-0), C¹⁸O(1-0), CN(1-0)

3 Tracing dense molecular component, gas depletion. $C^{18}O(1-0), CN(1-0)$

Higher density Molecular component, Zeeman candidates. *CN(1-0)*

Specific Science Drivers:

- The Three-Dimensional Structure of the Southern Milky Way
- 2. Regional variations of ISM conditions & impact on cloud profile
- 3. Star Formation Efficiency on Larger Scales
- 4. SEDs, Masses, and Luminosities of Dust Clouds
- 5. Understanding and Characterising the Cloud Mass Function
- 6. The shape of Magnetic Fields (via zeeman-splitting of CN ALMA)

ThrUMMs and MopraCO.

The scientific elements of ThruMMS might be looking familiar at this point.

and that's because they are....

More on this later

Observing strategy I:

Benchmark "normal" observing at 115 GHz:

1.5 hours for 5'x5' field yeilds ~300 mK RMS at 33'' resolution

Fast mapping:

- Increased scanning & survey rate \times 8
- (therefore reduced sampling rate by $\times 8$)
- per-channel sensitivity reduced only by $sqrt(8) \sim 3$.
- 5'x5' field is ~11 min, ~1.0 K RMS, 33'' resolution

Beam-sampled Mapping:

- Increased linear scanning rate $\times\,4$
- (survey rate increased by $\times 16$)
- per-channel sensitivity unchanged.
- (spatial resolution reduced by only ~2)
- 5`x5` field is ~11 min, ~300 mK RMS, 1.1' resolution

<u>''Very Fast Mapping''</u>

- survey rate increased by x32
- per-channel sensitivity reduced by \sim 3.
- spatial resolution reduced by ${\sim}2$

Benchmarks (for 5'x5' field):

 \sim I.4 min, \sim I.0 K RMS, I.1' resolution

Observing strategy II:

Active mapping:

Active mapping takes Tsys measurement prior to data-taking, and recomputes the sampling interval to ensure ~homogenous sensitivity.

 $v_N(el) = v_N(90) \left(\frac{T_{sys}(el)}{T_{sys}(90)} \right)$

 $v_N(90) = 55 GHz (\sim 70")$ $T_{sys}(90) = 400 K$

Tsys = X, sampling interval = I (arbitrary values) E.g.Tsys = 400 K

Tsys = $\sqrt{2X}$, sampling interval =1/2 E.g.Tsys = 565 K

(usually works, even in summer, number of repeat fields < 10%)

Line ratios on steroids.

R:G:B - ¹²CO, ¹³CO, C¹⁸O

Barnes & Muller et al,. ApJ, 2015

344°

Line ratios on steroids. Tau and abundance

Barnes & Muller et al, ApJ, 2015

$$\frac{T_{13}}{T_{12}} = \frac{1 - e^{-\tau_{13}}}{1 - e^{-R_{13}\tau_{13}}}$$

Assume LTE (Tex). Empirically solve for Tau,

Red: \sim low **T** and high Tex,

"warm and translucent".

Green~cyan/blue: ¹³CO or C¹⁸O (or both) > *average LOS* ¹²CO (¹³CO, C¹⁸O are saturated, but not bright) - High tau, low Tex. ''cold and opaque''.

Holistic views.

Tex, Column density and Xco

Barnes & Muller et al,. ApJ, 2015

TOP: ¹²CO Tau

MIDDLE: Ico

BOTTOM: Nco

$$N_{CO} = 2.28 \times 10^{14} \text{cm}^{-2} T_{\text{ex}}^{1.56} \int \tau dV$$

 $N_{H2} = X_{CO}I_{CO} = R_{12}N_{CO}$ The dashed blue line ~ standard $X_{CO}/R12$ ratio Solid line is a rough power-law fit to the modal trend, suggesting a more universal X-factor ratio of ~8-40 X 10²⁰

(See Dame et al, 2001, ~2 X 10²⁰ cm⁻² Kkms⁻¹)

Holistic views. Column density and Xco

Barnes & Muller et al,. ApJ, 2015

Disentangling the third dimension:

RCW 106 complex, and GMC 331.0+0.0 Nguyen et al, ApJ, 2015

Disentangling the third dimension: RCW 106 complex, and GMC 331.0+0.0

Nguyen et al, ApJ 2015

Cross collaborations:

SEDIGISM - PI F. Schuller

- CO(2-1) with field matched to ThrUMMS, resolution is superior: 20"
- Wide ranging collaboration, relevance to Thrumms is radiative transfer. tau, optical depth, temperature, density, etc. etc.)

Nobyama GPS (Pls: Minamidani+Umemoto)

- Science goals are similar, ¹²CO, ¹³CO, C¹⁸O., resolution is superior: 20''
- Ist+4th Quadrant complimentarity
- Better statistics of similar environments

..also planned and formulated: CO3-2 in the 1st quadrant w/ JCMT (PI:T. Moore, see also Dempsey et al, 2013)
.. in discussion (EA-ALMA) ASTE CO(3-2) in 4th quadrant (we'll have fully Rad transf input for ¹²CO J transitions , 1-0, 2-1, 3-2)

ThrUMMs and MopraCO.

Data of this region (ThrUMMS field) already exist, and are available at a resolution useful to MopraCO

This is the area proposed described by MopraCO (unreviewed) - C. Braiding slides 6, 37.

This is the net unique contribution to science from mopraCO (8 years and \$93k public money).

AN OPEN PROPOSAL TO MOPRACO:

MopraCO spends ~67% of its time re-walking already-explored territory. *This benefits noone*.

Over 8 years, (past+future), mopraCO **could** survey $0.25 \times 120 \times 8 \sim 240$ sq deg

(or propotionally, in whatever time is available...) I.e. - change the field. Save time, money and integrity.

High(ish)-latitude CO clouds (||| > 1) are in a ~different environment to ||| < 1: less cluttered velocity structure, CO/13CO ratio is less affected by optical depth etc.

'magnetic loop footprints' - e.g. Fukui et al, 2006: Chemistry, fluid dynamics, Vel, Temp, density distribution.
 Spitzer bubbles - e.g. Beaumont & Williams (JCMT), 2008
 Chiminey walls & vents - e.g. GSH 277+00+36 (Dawson et al, 2010)

FINALLY - A RANT.

By appealing to public funding via kickstarter, Mopra CO have bypassed external expert peer review. This is okay in some cases.. but generally:

This style of fund sourcing enters a new model where ethical use of public funding and efficient production of unique science that can only be self-policed.

I would not say that has happened in this case, from the very earliest stage.

Presently, only ~<33c of each kickstarter dollar goes to unique science. This could be, and should be 100%. Even worse: at this point, well-meaning kickstarter supporters have not been informed that the goals of MopraCO can already be realised **NOW** without their contribution,

....RANT ASIDE - HERE IS A SOLUTION..

ThrUMMS has data, but few personel. MopraCO has lots of people, but want data.... ThrUMMS wants more data too (just not of the same thing all over again...)

Solution: **<u>change the field</u>**, share the effort (and please communicate!)

In 2016... actually < =2015

Anything within 300-360 deg lon, +/- 1 deg lat

http://www.astro.ufl.edu/~peterb/research/ thrumms/rbank/