

Spectral Inversion of the $\mathrm{H} \alpha$ and Ca II 8542 Å Lines Observed by SST/CRISP in Chromospheric Jet

Július Koza ${ }^{1}$, Zurab Vashalomidze ${ }^{2}$, Teimuraz Zaqarashvili²,3,4

Ján Rybák ${ }^{1}$, Arnold Hanslmeier ${ }^{3}$
${ }^{1}$ Astronomical Institute of the Slovak Academy Sciences, Tatranská Lomnica, Slovakia
${ }^{2}$ Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia
${ }^{3}$ IGAM, Institute of Physics, University of Graz, Austria
${ }^{4}$ Space Research Institute, Austrian Academy of Sciences, Graz, Austria

Jets in the Solar Atmosphere

Observations show various kinds of jets in the solar atmosphere:

- type I spicules:
- type II spicules:
- RBEs/RREs:
- chromospheric anemone jets:
- macrospicules:
- Ha surges:
- X-ray jets:

20-25 km/s (Beckers 1968)
$50-100 \mathrm{~km} / \mathrm{s}$ (De Pontieu et al. 2007)
$50-100 \mathrm{~km} / \mathrm{s}$ (Rouppe van der Voort et al. 2009)
$10-20 \mathrm{~km} / \mathrm{s}$ (Shibata et al. 2007)
$100-150 \mathrm{~km} / \mathrm{s}$ (Pike and Mason 1998)
$50-200 \mathrm{~km} / \mathrm{s}$ (Canfield et al. 1996)
200-600 km/s (Shibata et al. 1992)

Type I and Type II Spicules

Type I spicules (Beckers 1972)

Type II spicules (De Pontieu et al. 2007) RBEs (Rouppe van der Voort et al. 2009)
diameter: 400-1500 km
speed: $\quad 20-25 \mathrm{~km} / \mathrm{s}$
lifetime: 5-15 min
diameter: < 200 km
speed: $\quad 50-100 \mathrm{~km} / \mathrm{s}$
lifetime: 10-150 s

Heating Mechanisms of Type II Spicules

Short life time: fast heating to transition region temperatures (De Pontieu et al. 2007)?
Further supported by IRIS (Pereira et al. 2014).

Mechanism for the fast heating remains unknown.
Thermal conduction:
Joule heating (spatial scale $\approx 200 \mathrm{~km}$):
Viscosity (spatial scale $\approx 200 \mathrm{~km}$):
hours
lon-neutral collisions (spatial scale $\approx 200 \mathrm{~km}$) 11 hour

Ion-neutral collisions lead to fastest heating, but spatial scales must be smaller!

Energy of flow must be transferred to smaller scales, where it may dissipate and heat the structure.

Kelvin - Helmholtz Instabilities?
Kuridze et al. 2016
Zaqarashvili et al. 2010, 2014
Soler et al. 2012

Aims of This Study

- to identify chromosheric jets in on-disk data obtained by the CRisp Imaging Spectropolarimeter (CRISP) on the Swedish 1-m Solar Telescope
- to infer physical characteristics of a typical jet with a modified cloud model (Liu \& Ding 2001) yielding:
- the Source function S
- the Line center optical thickness
- the Doppler width
$\Delta \lambda_{D}$
- the Line-of-sight velocity
$\mathrm{V}_{\text {LOS }}$
- to prepare basis for spectral inversions of large volumes of CRISP data aiming:
- to infer temporal evolution of $S, \tau_{0}, \Delta \lambda_{D}$, and $v_{\text {Los }}$ for large sample of chromospheric jets,
- to look for the Kelvin-Helmholtz Instabilities manifesting through increased non-thermal broadening of spectral lines.

Observations and Data Reduction

- coordinated SST-IRIS campaign in 13-19 May 2016 supported through SOLARNET
- data taken on 13 May 2016 between 08:46 UT and 10:02 UT in the quiet chromosphere close to disk center by SST/CRISP
- $\quad \mathrm{H} \alpha$ scanned in the range $\pm 1.4 \AA$ around center in 15 points separated $0.2 \AA$
- Ca II $8542 \AA$ A scanned in the range $\pm 1.2 \AA$ around center in 25 points separated $0.1 \AA$ with one extra point at $-1.5 \AA$
- temporal cadence of the $\mathrm{H} \alpha$ and Ca II 8542 Å line scans: 12.4 s
- data reduction: Luc Rouppe van der Voort, the CRISPRED pipeline (de la Cruz Rodríguez et al. 2015) and MOMFBD (van Noort et al. 2005)

Typical Spectral Manifestation of Rapid Blue Excursion (RBE)

RBE \equiv chromospheric jet

Rouppe van der Voort et al. (2009)

Spectral Inversion by Cloud Model

The classical cloud model

In this model by Beckers (1964), the line intensity $I(\Delta \lambda)$ at $\Delta \lambda$ from the line center is given by the formula:

$$
I(\Delta \lambda)=I_{0}(\Delta \lambda) e^{-\tau(\Delta \lambda)}+S\left[1-e^{-\tau(\Delta \lambda)}\right]
$$

where:
$I_{0}(\Delta \lambda)$ is the intensity of background profile
$S \quad$ is the constant source function
$\tau(\Delta \lambda)$ is the optical thickness given by: $\tau(\Delta \lambda)=\tau_{0} \varphi\left(\Delta \lambda, \Delta \lambda_{D}, v_{L O S}\right)$
where: $\quad \tau_{0}$ is the line center optical thickness
φ is the absorption profile (Gaussian or Voigt function)
$\Delta \lambda_{D}$ is the Doppler width
$v_{L O S}$ is the line-of-sight velocity
The model adopts a mean profile over the quiet chromosphere as the background profile $I_{0}(\Delta \lambda)$.

The modified cloud model

Liu \& Ding (2001) introduced the modified cloud model, in which the background profile $I_{0}(\Delta \lambda)$ is eliminated assuming its symmetry $I_{0}(\Delta \lambda)=I_{0}(-\Delta \lambda)$. In this model the observed asymmetry of the line profile $\boldsymbol{A}(\Delta \lambda)=I(\Delta \lambda)-I(-\Delta \lambda)$ is given as:

$$
A(\Delta \lambda)=I(\Delta \lambda)-I(-\Delta \lambda)=[I(\Delta \lambda)-S]\left[1-e^{\tau(\Delta \lambda)-\tau(-\Delta \lambda)}\right]
$$

Spectral Inversion by Cloud Model

In this study we employ the modified cloud model, but assuming that:

- the background profile is asymmetric,
- the asymmetry of the background profile can be represented by asymmetry of mean profile.

Then the observed asymmetry $A(\Delta \lambda)$ of line profile is given by the formula

$$
A(\Delta \lambda)=[I(\Delta \lambda)-S]\left[1-e^{\tau(\Delta \lambda)-\tau(-\Delta \lambda)}\right]+a(\Delta \lambda) e^{-\tau(-\Delta \lambda)}
$$

where $a(\Delta \lambda)$ is the asymmetry of the mean profile.
Then from the observables $A(\Delta \lambda), I(\Delta \lambda)$, and $a(\Delta \lambda)$ one can compute $S, \tau_{0}, \Delta \lambda_{D}$, and $v_{L O S}$ by the Levenberg-Marquardt least-squares minimization method (Markwardt 2009).

Remarks on Cloud Model

The classical cloud model (Beckers 1964) is very sensitive on the background profile $I_{0}(\Delta \lambda)$.

This problems solves the modified cloud model (Liu \& Ding 2001), in which the background profile is eliminated assuming its symmetry.
The model is predestined for highly asymmetric line profiles observed in flares and also in various chromospheric jets, in particularly in RBEs/RREs.

We suggests the new version of the modified cloud model, which assumes that the background profile is asymmetric and its asymmetry can be represented by asymmetry of mean profile.
The model works well in those parts of a line profile showing some asymmetry (line flanks), but fails in the line center and far wings with small or zero asymmetry.

General problem in application of single-component cloud model inversion is the overlapping of chromospheric structures (Rouppe van der Voort et al. 2009).

Evolution of selected chromospheric jet

$\Delta \lambda$
Field of View: $5.2 \operatorname{arcsec} \times 4.3$ arcsec, time step: 12.4 s

Evolution of selected chromospheric jet

$\mathrm{H} \alpha \quad$ Ca II 8542 Å

transverse motion

Example of the $\mathrm{H} \alpha$ and Ca II 8542 Å profile asymmetries

H α
$\Delta \lambda=+1.2 \AA \quad$ line center $\quad \Delta \lambda=-1.2 \AA$

Ca II $8542 \AA$

$$
\Delta \lambda=+0.6 \AA \quad \text { line center } \quad \Delta \lambda=-0.6 \AA
$$

fit = cloud model fit reference $=$ asymmetry of reference profile (spatial average over full FoV)

Example of the Ha and Ca II 8542 Å line profiles

Source function \mathbf{S}
Structure of chromospheric jet in $\mathrm{H} \alpha$

H α

$$
\Delta \lambda=-1.2 \AA
$$

Doppler width $\Delta \lambda_{\mathrm{D}}\left[\mathrm{km} \mathrm{s}^{-1}\right]$

Optical thickness τ_{0}

Doppler velocity $\mathrm{v}_{\mathrm{LOS}}\left[\mathrm{km} \mathrm{s}^{-1}\right]$

Source function \mathbf{S}
Structure of chromospheric jet in Call $8542 \AA$

Ca II $8542 \AA$
 $\Delta \lambda=-0.6 \AA$

Correlations of the parameters $S \tau_{0} \Delta \lambda_{\mathrm{D}} \quad \mathrm{V}_{\mathrm{LOS}}$

Doppler width $\Delta \lambda_{\mathrm{D}}\left[\mathrm{km} \mathrm{s}^{-1}\right]$

Optical thickness τ_{0}

Doppler velocity $\mathrm{v}_{\mathrm{LOS}}\left[\mathrm{km} \mathrm{s}^{-1}\right]$

bi-directional flow?

Structure of chromospheric jet in Ha and Ca II 8542 Å

$\mathrm{H} \alpha \quad-\mathrm{S}$ increases from the jet core towards its outer limits from $S \approx 0.2$ to $S \geq 0.3$

- prominent peak in the histogram at $S \approx 0.23$

Ca II $8542 \AA$ - S increases from the jet core towards its outer limits from $S \approx 0.25$ to 0.45

- the histogram suggests flat distribution of S

Structure of chromospheric jet in Ha and Ca III 8542 A

$\mathrm{H} \alpha$
Ca II $8542 \AA-\tau_{0}$ decreases from the jet core towards its outer limits from $\tau_{0} \approx 1.2$ to 0.5
Can be the jet considered as optically thin?

Structure of chromospheric jet in Ha and Ca III 8542 Å

Doppler width $\Delta \lambda_{\mathrm{D}}$

Single-peak distribution of $\Delta \lambda_{\mathrm{D}}$ for $\mathrm{H} \alpha$ but double-peak distribution for Ca II $8542 \AA$ A.
The first peak at $8 \mathrm{kms}^{-1}$ suggests very cold jet plasma and/or very small non-thermal broadening.

Structure of chromospheric jet in Ha and Ca III $8542 \AA$

Doppler velocity $\mathrm{v}_{\mathrm{LOS}}\left[\mathrm{km} \mathrm{s}^{-1}\right]$

Doppler velocity $\mathbf{v}_{\text {LOS }}$

Larger v ${ }_{\text {Los }}$ measured in $\mathrm{H} \alpha$ than in Ca II $8542 \AA$ A.
Ca II 8542 Å - signature of bi-directional flow

- sharp boundary between up- and downflows

Lengths and lifetimes of chromospheric jets

Ha and Call 8542 Length

Ha and Ca II 8542 Lifetime
yellow $=H \alpha$, blue $=$ Ca II $8542 \AA$

- lengths and lifetimes of 40 jets prepared for spectral inversion
- measured by CRISPEX graphical tool (Vissers \& Rouppe van der Voort 2012)

Medians	Length	Lifetime
$\mathrm{H} \alpha$	3540 km	81 s
Ca II $8542 \AA$	2700 km	80 s

Discussion of data uncertainties

H α I $/$ <I>

Discussion of data uncertainties

H α I < I $>$

Ca II $8542 \AA$ I $/<\mathrm{I}>$

Discussion of data uncertainties

General uncertainty of the H α and Ca II $8542 \AA$ Å line profiles intensities, most likely due to global oscillation modes, is about $\pm \mathbf{2 \%}$.

Discussion of data uncertainties

Discussion of data uncertainties

Results summary

- the new version of the modified cloud model by Liu \& Ding (2001) was applied to infer parameters of chromospheric jet observed simultaneously in the $\mathrm{H} \alpha$ and Ca II 8542
- the source functions of $\mathrm{H} \alpha$ and Ca II $8542 \AA$ increase from the jet core towards its outer limits
- the line center optical thicknesses of $\mathrm{H} \alpha$ and Ca II $8542 \AA$ decrease from the jet core outwards
- the jet is optically thicker in Ca II $8542 \AA\left(\tau_{0} \approx 0.82\right)$ than in $\mathrm{H} \alpha\left(\tau_{0} \approx 0.7\right)$
- the jet shows single-peak distribution of the Doppler width $\Delta \lambda_{\mathrm{D}}$ for $\mathrm{H} \alpha$ but double-peak distribution for Ca II 8542 Å.
- larger Doppler velocity vios measured in $\mathrm{H} \alpha$ than in Ca II $8542 \AA$
- signature of bi-directional flow in Ca II 8542 Å Doppler velocity

Special thanks to

EU-7FP-SOLARNET Transnational Access and Service Programme (High Resolution Solar Physics Network - FP7-INFRASTRUCTURES-2012-1)
sst/CRISP data processing: Luc Rouppe van der Voort
(Institute of Theoretical Astrophysics, University of Oslo)

