

University of Göttingen Institute for Astrophysics

24 June 2016 KIS Freiburg, Germany

Credit: NASA

CORONAL MASS EJECTIONS IN THREE DIMENSIONS - PHYSICS AND SPACE WEATHER FORECAST

University Göttingen - Sun, Heliosphere and Space Weather Research Group

Visualisation

CME Impact, OPTIMAP

CME Evolution, HELCATS

CME Turbulence

CME Modelling, Jets

F-Corona, SPP, SCOPE

A. Pluta

J. Hinrichs J. Rodmann

N. Mrotzek E. Bosman M. Venzmer

L. Volpes

J. Achenbach F. Schindler

Outline

- 1. Introduction Coronal Mass Ejections in the Pre-STEREO Era (sensed remotely and in-situ)
- 2. STEREO Observations of CMEs
- 3. CME Origin and Evolution in 3D
- 4. Space Weather Forecast The AFFECTS Project
- 5. Summary & Conclusions

Early Ideas about the Structure of Solar Ejecta

George Francis Fitzgerald (1892) proposed that "a sunspot is a source from which some emanation like a comet'stail is projected from the Sun…"and asked "is it possible then that matter starting from the Sun with the explosive velocities we know possible there, and subject to an acceleration of several times solar gravitation, could reach the Earth in a couple of days?".

Oliver Lodge (1900) suggested that magnetic storms are caused by "... a torrent or flying cloud of charged atoms or ions".

A magnetized particle cloud was proposed in 1959 by Thomas Gold.

No Flux Rope has been Proposed !

Burlaga, 1991

Historical CME Observation?

Eclipse Drawing by the German astronomer E. Tempel on 18 July 1860 (from Eddy 1974) Total solar eclipse of 1991 July 11th courtesy F. Espenak

The corona as observed during the total solar eclipse in March 2006

Overall brightness from different components $(B_K \approx 10^{-6} B_0)$:

K(Kontinuum)-Korona (Photospheric Light scattered by free electrons (Thomson-Scattering), I~N_e, polarised)

+

F-(Fraunhofer)-Korona (Zodiakal-Light, Rayleigh-Scattering by dust particles, esentially unpolarised, continuum spectrum)

E(Emission Line)-Korona, e.g. 530.3 nm FeXIV, 28.4 nm Fe XV, polarised)

T-Korona (thermal emission from dust particles in IR)

Angelo Secchi (1818-1878)

On 14th December 1971: OSO 7 images of the first ,,good" observed CME

NASA Orbiting Solar Observatory 7
(1971-1973):
3.0 - 10 R_s; SEC Vidicon detector
(3 arcmin resolution)
Weakness - 4 full images per day
(~30 CMEs observed)
(from Howard, 2006)

On 13-14 Dec 1971, a bright streamer in the southeast participated in the "coronal transient" that traveled outward at over 1000 km/s (Tousey, 1973)

1973-1974: Skylab Observations

- 2.0 6 solar radii; Film detector (5" resolution)
- ~100 CMEs observed, established importance (and beauty); statistics; associations
- Weakness: limited film capacity, 3 short duration missions

A CME Observed with the Coronagraph

on board Skylab in 1973

<u>What is a CME</u>?

A new, discrete, bright feature appearing in the field of view of the coronagraph and moving outwards over a period of minutes to hours (Munro et al., 1979)

SMM Observations of Three Part Structured CMEs

NASA Solar Maximum Mission (SMM) (1980, 1984-1989)

- 1.6 6 solar radii
- 5 cm SEC Vidicon detector,

(30 arc second resolution)

CME statistics, 3-part
 structure to CMEs Weakness:
 quadrant field of view,
 cadence
 (Howard, 2006)

1979-1985: Solwind Observations

FORMS OF CORONAL MASS EJECTIONS HALO LOOP ROUND FRONT MAY 79 0355 8 APR 8 0227 0456 11 6 SEP 80 DOUBLE SPIKE SPIKE MULTIPLE SPIKE 2201 2351 0526 25 MAR 81 FAN COMPLEX STREAMER "BLOWOUT"

USAF P78-1 (Solwind 1979-1985) Same characteristics as OSO-7: CME Statistics, solar cycle dependence, relation to shocks, first halo event German Helios mission presented in-situ measurements of solar wind in quadrature to Sun-Earth line and had a zodiacal light photometer that provided the first detection of a CME in the inner heliosphere

Weakness: limited spatial resolution, field of view (Howard, 2006)

Howard et al. 1984

Correlated Analysis of Remote Sensing and In-Situ Observations with P78-1 and Helios 1 & 2

n, [cm_]

The Helios 1 & 2 Spacecraft (1974-1986)

Burlaga: Magnetic Clouds

A Magnetic Cloud (Helical Flux Rope CME in the Solar Wind) Measured by Helios 1 following a S/C Directed CME

Suprathermal Electrons (E=221 keV)

Phillips et al., Solar Wind 7, 1992

IMF Polar (NS) Direction

IMF Azimuthal (EW) Direction

IMF Strength

Bothmer, Solar Wind 9, 119-126, 1999

Explanation for the Magnetic Structure of a CME in the Solar Wind

Goldstein, 1983; Bothmer & Schwenn, Ann. Geophys., 16, 1-24, 1998

MHD-Equations for Magnetic Flux Ropes (CAFF)

A plasma in static equilibrium, without influence of external forces (e.g. Gravitation), can be described as follows:

- grad p + j x $\underline{B} = 0$

p = plasma pressure
 j_= current density
 <u>B</u> = magnetic field

since $\beta \ll 1$, a force-free configuration can be considered: $j_x \underline{B} = 0$ The electric current is flowing everywhere parallel or antiparallel with respect to <u>B</u>

The B&S Scheme for FR CMEs

Quadrupolar Fields not Included

Bothmer & Schwenn, 1998

TRACE Observations and SOHO/MDI magnetogram

Sample CME: The July 14, 2000 event

11:06:05 - 10:54:07

10:54:07 - 10:30:06

SEP effects on SOHO solar cells

Extreme SEP event occurred on August 7, 1972, i.e., between Apollo 16 and 17. SEPs cause problems for start trackers, electronic devices (e.g. Nozomi)

Brekke et al., 2006

Space Weather on Mars

- Radiation hazards due to solar energetic particles (SEPS) and cosmic rays
- Effects of SEPs on solar cells and electronic devices
- Effects of dust particles on solar cells

Solar wind and ground-based magnetometer data

Credit: M. Venzmer, AFFECTS

The solar wind data from Wind

CME MVA-Analysis

Axis orientation:

 $\Phi = 69^{\circ}$ $\Theta = +45^{\circ}$

M. Venzmer, OPTIMAP, HELCATS

Sketch of the Possible Origin of Interplanetary Magnetic Flux Ropes

Only 1/3 of all ICMEs appear to be flux ropes (Gosling, 1993); 46% (Bothmer & Schwenn, 1996)

Adapted from Bothmer & Schwenn, Ann. Geophys., 16, 1-24, 1998

SOHO/LASCO Reveals Flux Rope Structure of CMEs

2001/04/23 21:30 UT

Unprecedented Observations of CMEs with SOHO

Note the CME's three part structure!

Basic Properties

- Frequency:
 - 3.5 Events per Day in Maximum
 - o.2 Events per Day in Minimum
- Mass: 5x10¹² bis 5x10¹³ kg
- Velocities:
- 20 km s⁻¹ (sub-sonic) up to over
 2500 km s⁻¹ (sub-alfvénic)
- CMEs with V>400 km/s cause shocks

The Dynamic Corona Observed with SOHO/LASCO/EIT -December 1999 to January 2000

SOHO has observed >10.000 CMEs during 1996-2007.

Coronal Mass Ejections (CMEs) occur on variable spatial- and time-scales.

Courtesy: B. Podlipnik

Frequencies of CME velocities from January 1996 -March 2013, 20.635 CMEs (SOHO/LASCO)

V. Bothmer, R. Kanzler, A. Pluta; eHEROES EU FP7 project

CMEs originate from bipolar photospheric fields regions

Filaments, Arcades, CMEs and Variation of the Photospheric Magnetic Flux in the Source Region

A detailed study has started to investigate the evolution of the photospheric flux in the source regions of CMEs (Tripathi, Bothmer, Cremades, A&A, 422, 307-322, 2004).

23:59:01UT_2000/09/10

MD

Scheme of the Dependence of CME Magnetic Cloud Configurations on the Solar Cycle

No consideration of quadrupolar fields

Bothmer & Schwenn, 1998

Basic Scheme Explaining the 3D Structure of CMEs

The WL coronagraph observations of CMEs can be modeled through large-scale magnetic flux ropes which properties depend on the magnetic source region characteristics.

Modelling the Electron Density Distribution

Cremades & Bothmer, A&A 2004

Howard, Thernissien and Vourlidas, ApJ 2006

Stereoscopic Observations of the Sun-Earth System

Multi-point Space Observations

STEREO-B (BEHIND) Satellite and Payload

STERE

Sun Centered Imaging Package (SCIP) und SESAMe

STEREC

Fields of View of the Five SECCHI Telescopes

SECCHI Exploration of CMEs and the Heliosphere on STEREO

- What Configurations of the Corona Lead to a CME?
- What Initiates a CME?
- What Accelerates CMEs?
- How Does a CME Interact With the Heliosphere?
- How do CMEs Cause Space Weather Disturbances?

Explore the Magnetic Origins of CMEs Photospheric Shearing Motions Magnetic Flux Emergence Magnetic Flux Evolution and Decay

- The Sun-Earth Connection: Understand the Role of CMEs in Space Weather Observe Trajectory of Earth-Directed CMEs
 - Predict Arrival Time and Geo-Effectiveness of CMEs

- CME Physical Signatures at 1 AU
 Interaction With Heliospheric Plasma Generation of Shocks Sheet & Co-Rotating Interaction Regions Acceleration of Charged Particles
 - Interaction With Other CMEs

- Reconnection
- The Role of Plasma vs. Magnetic Field Effects
- Rapid vs. Slow Drivers

- Study the Physical Evolution of CMEs
 - Reconnection
 - Continued Energy Input and Mass Ejection
 - Effect on Helmet Streamers

HI FOV Geometry and WL Sensitivity

Basic Parameters	HI-1	HI-2
Direction of Centre of FOV	14 degrees	53.7 degrees
Angular Field of View	20 degrees	70 degrees
Angular Range	4-24 degrees	18.7-88.7 degrees
Image Pixel Size	70 arcsec	4 arcmin
Spectral Bandpass	630-730 nm	400-1000 nm
Nominal Image Cadence	60 min	120 min
Brightness Sensitivity (B _o = solar disk)	3 x10 ⁻¹⁵ B _o	3x10 ⁻¹⁶ B _o

STERE

Harrison et al., Sol. Phys. 2008; from Socker et al. (2000)

HI Image Analysis

Venus (lower left) and Mercury

- 1) Correction for shutterless operation and flatfielding.
- 2) Blooming around Venus and Mercury (or stars) removed.
- 3) Background substracted: Light from K, F, corona, stars, milky way, planets, cosmic rays. Background selection: longer for stable structures like streamers, min. in each px over 1 day (CMEs), 3 days (streamers), 7 days, moving averages for movies.
- 4) CMEs become visible as 1.7 x 10⁻¹⁴ $B_{\rm 0}$ bright features.
 - Running difference images $(I_{n+1} I_n)$
 - Star drift (~2.5 arcmin/hr=1px, star alignment GEI)
 - Correction for dust impacts
 - HI 2 image analysis most sensitive

Examples of STEREO/SECCHI/COR2 CME Observations

http://secchi.nrl.navy.mil/

STEREO/SECCHI/COR2 Synoptic Movie

CME Frequencies and Sunspot Number

CMEs are intimately connected to the photospheric magnetic flux

NASA, Marshall Space Flight Center

Earth-Selfie from STEREO-A

December 2008 – First CME Tracked All Away Along the Sun-Earth Line

Davis et al., 2009

CME tracked Sun to Earth

STEREO-A:12/11/08 12:55:00 AM

Credit: NASA, deForest

STEREO SECCHI/EUVI A, B 304 Å and COR 2 A, B Observations

Correlated Analysis of STEREO/SECCHI/HI and ACE Data

Consistent with the basic scheme introduced by Bothmer & Schwenn

Complications not addressed, e.g. quadrupolar configurations, deviations from Joy's & Hale's lawa, effects from coronal interactions and ip compression

STEREO SECCHI/EUVI A, B 304 Å and COR 2 A, B Observations

The Graduated Cylindrical Shell Modell

CME Modelling: Dec. 12, 2008

Credit: E. Bosman

Sample GCS Modelling

500 × 400 pixels 5.2 kB 100%

CME-Type WL-Reproductions

Credit: E. Bosman

CME-Types can be reproduced through FRs

CMEs are large-scale magnetic flux ropes

Complications: Shock fronts ahead of CMEs

Distortion of CME fronts

AIA 304 - 2013/08/20 - 00:00:19Z LASCO C2 - 2013/08/20 - 00:00:06Z

Lateral expansion of CMEs - SDO/AIA 171

Credit: SDO/AIA

The associated low coronal wave

2014-02-25 00:34:01 (21.1 nm, dimming 2960, seq 1) intensity 0.0 * 10 ^ 6

> Can be studied with AFFECTS Solar Demon Tool in NRT

Credit: SDO/AIA, SIDC, AFFECTS

Near-Sun rapid CME-Evolution

Credit: SDO, SOHO

Multiple activity: STEREO/SECCHI A, B EUVI, COR 1 - August 01, 2010

STEREO/SECCHI/HI1

STEREO/SECCHI A CME Tracking - August 01, 2010

Increased Geomagnetic Activity Requires Magnetic Reconnection Processes

Comet Encke – Tail disruption through CME impact - HI 1 A, 20th April 2007

Period: 3.3 Years; Perihel: 0.338 AU FOV ~ 42.10⁶ km (0.28 AU)

Vourlidas et al., ApJ 2007

Magnetic activity, Superstorms (Kp=9, Σap>1500) and Sunspots 1844-2010

; Monthly Smoothed <Ap>, <Ap'>(1844-1931); Normalized Storm Magnitude;, 1/3 SSN

Magnetic Activity, Superstorms (Sap>1500) and Sunspots (monthly smoothed SSN) 1844-2010

Some Statistics (1932-2010):

- 281 storms with Kp≥8-
- 44 storms with Kp≥9-
- 26 storms with Kp 9
- About 1-4 severe storms per cycle

A comparison of all storms with Kp-values of 9, with disturbances of the Swedish Power Grid since 1950 shows: ~1/3 of all events had effects – under study

JOURNAL

COMMITTEE ON THE PEACEFUL USES OF OUTER SPACE

SCIENTIFIC AND TECHNICAL SUBCOMMITTEE FORTY-EIGHTH SESSION Vienna, 7-18 February 2011

THURSDAY, 10 FEBRUARY 2011

No. 5

<u>Programme of Meetings and Agenda for</u> <u>Thursday, 10 February 2011</u>

10.00 am - 1.00 pm	744 th meeting	Room M1
	Agenda Item	Item No.
	General exchange of views	[3]
	Remote Sensing	[6]
	Disaster management support	[8]
	Nuclear power sources	[10]
	International Space Weather Initiative	[12]

Special Presentations on Outer Space Activities

At the end of the morning session (744th) of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space, *today*, 10 February 2011, there will be four special presentations on "Extreme Space Weather" by Ms. Lika Guhathakurta of the United States of America, on "From Research to Operations – Ongoing and planned European and International Space Weather Projects" by Mr. Volker Bothmer of Germany, on "Reception, interpretation and utilization of satellite images received by UN-SPIDER during earthquake and tsunami which affected Chile on 27 February 2010" by Mr. Eugenio González of Chile, on "the 10th anniversary of the International Charter Space and Major Disasters" by Mr. Jean-Charles Bigot of the European Space Agency, in Room M1.

V.11-80698 (E)

Congress of the United States Mashington, DC

Invitation to the Electric Infrastructure Security Summit – Washington D.C.

January 12, 2011

The 2nd annual world infrastructure security summit, April 11, 2011.

Based on extensive testimony to Congress and numerous recent reports from U.S. government commissions and agencies¹, the national electric grids of the U.S. and allied nations could be severely damaged or permanently burned out by natural or malicious electromagnetic threats.

Growing concerns over grid vulnerability to natural threats led NASA and the National Academy of Sciences to predict catastrophic, long-duration failures in unprotected electric grids, due to expected unusually severe solar flares and coronal mass ejections. They have advised the U.S. government that severe flares of this magnitude could occur in the near term: such flares recur around once per century, with the last two observed in 1859 and 1921. According to government reports an EMP strike – a nuclear detonation over a targeted nation or nearby international waters – would also damage or permanently destroy critical long-lead components in a national electric grid, causing a blackout that could last months or years. Non-nuclear electromagnetic devices could have a similar impact over smaller areas.

With the impact of severe space weather expected to be world-wide and the affected area from an EMP strike continental in scale, the effects of either would be serious societal disruption and destruction. Given the loss of vital infrastructures, these threats could involve loss of life on an unprecedented scale.

As the Organizing Co-Chairs, we wish to invite you to join us in a special multi-national government-only summit in the U.S. Congress on April 11, 2011. Senator Jon Kyl will also co-chair the event. The Electric Infrastructure Security Summit (EISS) Washington D.C.² will be the 2nd meeting of this new international security framework. EISS London³ took place on September 20, 2010 with senior delegates from eighteen nations, including cabinet level representation from the U.K. and U.S. delegates from Congress, the White House, DOE, DOE, DOE, FERC and other agencies.

We are concerned with the unprecedented danger of this national infrastructure vulnerability, and hope you will be able to participate in this new security framework. **EISS Washington D.C.** will accelerate efforts to upgrade and protect the national electric grids of the U.S. and its allies through multi-national coordination and cooperation, and will include review and potential endorsement of the draft **International Infrastructure Protection Roadmap**.

We look forward to your participation in the summit.

Thank you.

Wette S. Clarke

Congresswoman Yvette D. Clarke //Congress/man Trent Franks Organizing Congressional Co-Chair Organizing Congressional Co-Chair

Rt. Hon. James Arbuthnot MP

Organizing UK Parliament Co-Chair Chair, UK Defence Select Committee

TL.ST

¹ Please contact our offices for access to reports from Congress, DOE, FERC (with DOE and DHS), and NASA / NAS.

² The EISS Summit Series is a government / NGO partnership, co-hosted by the EIS Council and the Henry Jackson Society.

³ To view EISS London, visit <u>www.eissummit.com</u>

Forecast requires knowledge on CME Magnetic Field and Evolution to Earth

Which direction does the CME take?

Will it hit or miss Earth?

When will it arrive at Earth and with which V and B_z ?

Images: NASA

AFFECTS

Advanced Forecast For Ensuring Communications Through Space

Solar storms are a consequence of sudden eruptions of magnetised gas in the Sun's outer atmosphere. Commonly such storms start with a sudden release of electromagnetic radiation – a solar flare, and by an eruption of a giant cloud of magnetised plasma – a coronal mass ejection (CME). A fast CME also accelerates solar particles to high energies – a solar energetic particle event.

Solar storms affect the Earth environment from the magnetosphere down to the ionosphere, and even to the lower atmosphere climate system. The natural hazards of severe space weather have the potential to catastrophically disrupt the operations of technological systems, such as communication systems and power grids on Earth. Through the AFFECTS project funded by the European Union's 7th Framework Programme, European and US scientists develop an advanced prototype space weather warning system to safeguard the operation of telecommunication and navigation systems on Earth to the threat of solar storms. The project is led by the University of Göttingen's Institute for Astrophysics and comprises worldwide leading research and academic institutions and industrial enterprises from Germany, Belgium, Ukraine, Norway and the University.

Fraunhofer

КД

GEORG-AUGUST-UNIVERSITÄT

ASTRIUM

www.affects-fp7.eu

Official Media Partner

Funded by the European Union Image Credits: University of Göttingen, NASA, ESA, Planetarium Hamburg

UNIVERSITY OF TROMSØ UIT

6(

SOHO

ACE

AFFECTS Trailer

AFFECTS Workflow

AFFECTS Website - http://www.affects-fp7.eu/weather

AFFECTS

- Advanced Forecast For Ensuring Communications Through Space - is a space research project under the 7th Framework Programme of the European Union.

AFFECTS will provide advanced early space weather warning to protect communication systems.

The latest Space Weather Reports can be found at WEATHER.

Please note that we only update that page in case of a major event!

You can now subscribe to our new feed "AFFECTS space weather reports and storm warnings" to keep informed about severe space weather conditions. Subscribe here: http://www.affects-fp7.eu/space-weatherreports/rss_sw-reports.xml

PLEASE NOTE: When using SAFARI the rss feed might be displayed in your MAIL account. Additionally, it does not work with GOOGLE CHROME.

THE FOLLOWING INSTITUTIONS ARE INVOLVED IN AFFECTS:

29/11/13: All presentations held at the AFFECTS splinter meeting © ESWW10 can be downloaded at -> NEWS & EVENTS -> ESWW SPLINTER.

15/11/13: Today we published our **8th AFFECTS Project Newsletter**. It can be downloaded at -> NEWS & EVENTS.

13/11/13: During ESWW10 in Antwerp next week, the AFFECTS team organizes a splinter session on "AFFECTS Space Weather Tools and Services provided". The meeting will take place in room Scala 3 on 21/11 at 17:15 to 18:45. We are looking forward to welcoming all ESWW10 participants. More information about the splinter meeting can be found at -> NEWS & EVENTS -> ESWW SPLINTER.

- Weather reports and alerts based on solar activity analysis
- Links to partner sites and other useful resources
- Subscription Services (Flares, CMEs, SEPs)
- Service Brochure
- PR Material (Trailer, press releases, meeting reports)
- CME databases, modelling results
- Link to AFFECTS iOS App
- Official forecast for RTL and base for dedicated project for German Space Situational Awareness Center (OPTIMAP)

Growing Number of Users

Sample Users

Airlines	Surveying and Mapping	Electric Power	Satellites
Aer Lingus	AE & E Trucking, Etc., LLC	Allegheny Power	Lucent Technologies
Air Canada	AEI-CASE Engineering	Ameren Corporation	AeroMap U.S.
Air China	Airmag Surveys	Bechtel Nevada	Aerospace Corporation
Air Europa	Associated Engineers, Inc	Bonnevill Power Administration	Alcatel Space
Air Line Pilots Association	Athens Group (oil & gas)	Central Maine Power	American Space Culture Foundat
Air New Zealand	Baker Hughes (drilling)	Cleco Power LLC	AMSAT-France
AirMed Inc.	Banks - Every Major Airling (
Airservices Australia	Barr E • Every Major Airline (world wide)	erospace
Alaska airlines	Benne • Every Major US Pow	er Company	g
Allied Pilots Association	Black Every major CO I OW		lian Space Agency
ALPA Japan	Carvel • Every Major Satellite	e Company (world wide)	a Space Surveillance Centre
American Airlines	Christer LIC Forderrol Agreeneine		Globe
American Eagle airlines	Clarida • US Federal Agencies	5	tar
American Trans Air	• Department of I	Defense	n Reconnaissance Systems
Boeing / Flight Test		Bereinse.	al Dynamics C4S
British Airways	Diamo • NASA		sat
Bushmail	Earth	-	at
Cathay Pacific Airway	Easter • Department of I	nergy	bace Systems Division
Continental Airlines	• Dopartmont of l	Homoland Socurity	Aerospace Exploration Agency
Emirates		Tomerand Security	ommunications
FedEx	Geold • Federal Aviation	n Administration	eed Martin
German ALPA	Global		Skynet
Icelandic ALPA	GRW /		hay Satellite Corporation
Irish Aviation Authority	Halcyd • 32 000 Spacific Cust	omore	Space Science Systems, Inc.
Jet Aviation Business Jets		· 52,000 Specific Customers	
korean air	Uohns • 15 – 20 Million Web	Hits a dav	kies Satellites
Lufthansa	Jones, 10 20 Million 100		bace Technology
Lufthansa Cargo	marine R/D Survey	Puget Sound Energy	North Star Data
Northwest Airlines	NC Geodetic Survey	Soreq NRC	Northrop Grumman
Oslo Lufthavn AS	Nexen Inc. (oil)	Swedish Geological Survey	Oceaneering Space Systems
Qantas Airways	NOVA Engineering & Consulting, Int'l.	Iexas-New Mexico Power	Omnistar, Inc.
Raytheon Aircraft Co.	NYS Professional Engineer	Iranspower NZ Ltd	ORBCOMM
SCIA	Old Dominion Freight Lines		Orbital Sciences Corp
SkyWest Airlines			P I Asia Cellular Satelitte
Sun Country airlines	Oxy (oil & gas)	Western Area Power Admin.	Raytheon
Sundt air (Norway)	Pape-Dawson Engineering		ROCKWEII COIIINS, INC.
Swales Aerospace	PGS Urishore		SES AMERICOM
	Planning Consultants, Inc.		SES ASTRA
APLA, Argentina	Portiand Natural Gas Transmission		
ATAAIIIINES			Skyway, Inc.
	Schlumberger Drilling & Measurements		Space Engineering Development
North American Airlines	Seelye		Space Imaging

ESA - Space Situational Awareness (SSA) Program

PROJECTS: ESC-H, ESC-I, SCOPE, AFFECTS

Event Awareness – Subscription Services

AFFECTS

- Advanced Forecast For Ensuring Communications Through Space - is a space research project under the 7th Framework Programme of the European Union.

AFFECTS will provide advanced early space weather warning to protect communication systems.

The latest Space Weather Reports can be found at WEATHER.

Please note that we only update that page in case of a major event!

You can now subscribe to our new feed "AFFECTS space weather reports and storm warnings" to keep informed about severe space weather conditions. Subscribe here: http://www.affects-fp7.eu/space-weatherreports/ss_w-reports.xml

PLEASE NOTE: When using SAFARI the rss feed might be displayed in your MAIL account. Additionally, it does not work with GOOGLE CHROME.

THE FOLLOWING INSTITUTIONS ARE INVOLVED IN AFFECTS:

LATEST NEWS

29/11/13: All presentations held at the AFFECTS splinter meeting @ ESWW10 can be downloaded at -> NEWS & EVENTS -> ESWW SPLINTER.

15/11/13: Today we published our **8th AFFECTS Project Newsletter**. It can be downloaded at -> NEWS & EVENTS.

13/11/13: During ESWW10 in Antwerp next week, the AFFECTS some organizes a splinter session on "AFFECTS Space Weather Tools and Services provided". The meeting will take place in room Scala 3 on 21/11 at 17:15 to 18:45. We are looking forward to welcoming all ESWW10 participants. More information about the splinter meeting can be found at -> NEWS & EVENTS -> ESWW SPLINTER. Von SWPC Product Subscription Service <SWPC.Products@noaa.gov>

An VolkerBothmer 🚖

Space Weather Message Code: SUMX01 Serial Number: 91 Issue Time: 2013 Oct 29 2221 UTC

SUMMARY: X-ray Event exceeded X1 Begin Time: 2013 Oct 29 2142 UTC Maximum Time: 2013 Oct 29 2154 UTC End Time: 2013 Oct 29 2201 UTC X-ray Class: X2.3 Location: N05W90 NOAA Scale: R3 - Strong

NOAA Space Weather Scale descriptions can be found at www.swpc.noaa.gov/NOAAscales

Potential Impacts: Area of impact consists of large portions of the sunlit side of Earth, strongest at the sub-solar point. Radio - Wide area blackout of HF (high frequency) radio communication for about an hour.

:Issued: 2013 Oct 29 2313 UTC :Product: documentation at http://www.sidc.be/products/presto			
<pre># FAST WARNING 'PRESTO' MESSAGE from the SIDC (RWC-Belgium) # #</pre>			
<pre>WOAA active region (AR) 11875 produced an X2.3 flare peaking around 21:54 UT on</pre>			
October 29. This flare is accompanied by a CME detected in LASCO/C2 at 22:12 which will be analyzed			
as more data come in. More X flares are possible. The warning for proton storms is maintained. Since AR 11875 is currently located at the west limb, a proton event associated to this X			
flare is very likely.			

Sample Event - Halo CME on September 29, 2013

CME on 29 September 2013 - SDO, STEREO/SECCHI/COR2 & COR1 A observations

Enlargement of small-scale features

STEREO Ahead COR1

2013-09-29 22:40:24

Expansion of fine-scale features - Arrival times will depend on observer's position wrt CME SR

2013/09/29 23:54:00

AIA 304 - 2013/09/29 - 18:00:31Z

Emerging Flux Triggering the CME

CME on 29 September 2013

CME Analysis – N. Mrotzek, HELCATS Team UGOE

NSTITUT FÜR Astrophysik Göttingen

GCS Modelling of Multipoint Observations

Position on Sun:

 $\Phi = 12^{\circ} \qquad \theta = 25.12^{\circ}$ Associated C1.2 Flare at: $\Phi = 33^{\circ} \qquad \theta = 10^{\circ}$

GCS Modelling 2013-09-29 - N. Mrotzek, HELCATS Team UGOE

Height-Time Profile from GCS Modelling

Fit coronagraph
 Images for HT-Data.

NSTITUT FÜR

Astrophysik Göttingen

- Fit polynomial to get inital CME speed.
- Use fit result for Drag-Fit.

Modelling Results as Input to UGOE AFFECTS DDC

Credit: A. Pluta, AFFECTS, HELCATS

DDC Forecast bases on 3D CME Modelling

Credit: A. Pluta, AFFECTS, HELCATS

CGAUSS

Coronagraphic German and US SolarProbePlus Survey

German Contribution to the Wide-field Imager for Solar PRobe (WISPR) for the NASA Solar Probe Plus Mission

What is WISPR (Wide Field Imager for Solar Probe Plus) Instrument Overview

Simulation of WISPR Observations During a 10 $\rm R_{s}$ SPP Perihelion

CME Propagation

- Which part of the CME hits earth?
- Assuming self similar expansion of the CME!
- Calculate Expansion factor using GCS parameters.
- Combining the EF with the arrival time in L1 we can calculate the distance of the APEX for this time.

Event from 29. Sep. 2013:

$$EF = \frac{h_{Earth}}{h_{Apex}} = \frac{v_{Earth}}{v_{Apex}} = 0.88$$

İnstitut für Astrophysik Göttingen

Final Drag fit

CME Kinematics 2013-09-29 – N. Mrotzek, HELCATS Team UGOE

CME Signature in ACE Solar Wind Data

SPP/WISPR/CGAUSS Team UGOE, M. Venzmer

CME Propagation

- Which part of the CME hits earth?
- Assuming self similar expansion of the CME!
- Calculate Expansion factor using GCS parameters.
- Combining the EF with the arrival time in L1 we can calculate the distance of the APEX for this time.

Event from 29. Sep. 2013:

$$EF = \frac{h_{Earth}}{h_{Apex}} = \frac{v_{Earth}}{v_{Apex}} = 0.88$$

CME QP Source Region

Summary & Conclusions

- Multipoint space observations have provided unique insights into heliospheric physics
- CMEs are 3D Magnetic Flux Ropes
- CMEs are intimately connected to the photospheric magnetic fields
- Reliable forecasts require a precise understanding of the underlying science (drag, self-similar expansion, 3D topology, expansion of magnetic fields, shock formation)

