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Forward problems in local helioseismology have thus far been addressed in a semi-analytical fashion using the Born approximation and normal-mode expansions or direct simulations. However,
it has proven difficult to take into account geometrical and instrumental effects. To avoid these difficulties we employ a numerical method to determine the impulse response of a solar model
in a 2.5D geometry. Solving the wave equation in the frequency domain avoids the difficulties (instabilities) faced in the time domain. This framework is flexible, computationally efficient,
and produces solar-like power spectrum and cross-covariance that agree reasonably with observations, including the high-frequency continuous spectrum. Additionally, we present accurate
travel-time sensitivity kernels for perturbations to the solar medium which hint at the promising potential of this framework in future forward and inversion problems.

Wave Propagation in Axially Symmetric Solar Models
In order to describe wave propagation in the sun, we compute the Green’s function G which is the response
to a point source at any arbitrary location. It is defined as the solution to

LG(t, rrr, rsrsrs) = δ(t− t0)δ(rrr − rrrs),

where L is a linear operator modelling solar wave propagation. The point source of the oscillations is located
at rrrs and at time t0.

In frequency space, we consider a simple scalar wave operator that allows fast computation while capturing
the essential physics of acoustic waves in the sun:

LGω =
(
ω2 + 2iωγ

)
Gω + 2iωuuu · ∇Gω + c∇ ·

(
1

ρ
∇(ρcGω)

)
= −δ(rrr − rrrs), (1)

where Gω = c∇ · ξξξω is linked to the divergence of the fluid displacement, within an atmosphere of density ρ
and sound speed c. Additionally, the waves are attenuated at a rate of γ. For simplicity, we have neglected
gravity terms and consider a first-order advection term where the flow uuu is mass conservative (i.e. ∇·ρuuu = 0).

The fundamental quantity for local helioseismology is the cross-covariance of the seismic wavefield. In par-
ticular the cross-covariance of the oscillations between two observation points (rrr1, rrr2) can be written, under
the assumption that sources are spatially uncorrelated, as

C(rrr1, rrr2, ω) =

∫
V

∫
V ′
G∗(rrr1, rrr)G(rrr2, rrr

′)M(rrr, r′r′r′)ρdrrrρ′drrr′ (2)

where the source of excitation is specified through,

M(rrr, rrr′, ω) = ε(rrr)Ps(ω)δ(rrr − rrr′). (3)

where ε(rrr) and Ps(ω) control the spatial and frequency dependencies of the source covariance, respectively.
Equation 2 is an essential quantity, but is far from trivial to compute. Here we adopt a different strategy to
compute C. Specifically, does there exist a source covariance such that C can be described in terms of the
Green’s function, as is done in geophysics [1]?

We first define a generalized seismic reciprocity, whereby the same signal is observed whether rrr1 and rrr2 are
interchanged or not. Specifically,

G(rrr2, rrr1;uuu) = G(rrr1, rrr2;−uuu), (4)

where the sign of uuu indicates the direction of flow. With this generalization in hand, the expectation value of
the cross covariance is then related to the Green’s function through

Cω(rrr1, rrr2,uuu) =
Ps(ω)

4iω
[Gω(rrr2, rrr1;uuu)−G∗ω(rrr2, rrr1;−uuu)] , (5)

under the assumption of that the source covariance amplitude takes the form of

ε(rrr) =
γ(rrr, ω)

ρ(rrr)
+
c

2ρ
δ(r −R(θ)). (6)

To simplify the forward problem in local helioseismology it would be nice if equation 5 holds. Does it give
a reasonable power spectrum? To determine this we first need to solve equation 1 in a reasonably efficient
manner.

Figure 1: Illustrations of (left) the computational
mesh used by the finite element regime and (right)
the imaginary part of the Green’s function with the
Dirac source located at a distance of 0.8R� along the
z-axis

Axially Symmetric Problem: We consider an axially-
symmetric background model and flow and thus can de-
compose our problem into individual 2D problems for each
Fourier mode m,

Gω(r, θ, φ, rsrsrs) =
∑
m

Gm
ω (r, θ, rsrsrs)e

imφ, (7)

and reconstruct the solution into 3D in post-treatment. This
problem is ‘embarrassingly parallel’ in both frequency and
azimuthal mode, allowing for very efficient computation.
In our case we perform the computations using the Mon-
tjoie solver, which is based on the finite elements method.
The solution is obtained on a computational mesh consist-
ing of small cells in which the solution is projected onto
high-degree polynomials (see figure 1). Due to the rapid
changes in the sound speed and density near the surface we
refine the mesh accordingly. A Neumann boundary condi-
tion (∂nGω = 0) is imposed upon the polar axis and a Som-
merfeld boundary condition (∂nGω = ikGω) on the outer
radial edge (c.f. Leguèbe et al. Poster).

Power Spectra
In order to assess the validity of our convenient source covariance (Eq. 5), we compare the power spectra and
cross-covariance obtained from Montjoie with that which is observed on the solar surface. We compute the
power spectrum Plm for each azimuthal mode m and degree l through a spherical harmonic transform of the
cross-covariance function,

Plm(ω) =

∫ 2π

0

∫ π

0

Cω(θ)Y
m
l (θ, φ) sin θ dθdφ,

=
Ps(ω)

2ω

∫ 2π

0

∫ π

0

ImGω(θ)Y
m
l (θ, φ) sin θ dθdφ.

(8)

where the last equality is derived from a background without flow (uuu = 0). Figures 2 and 3 show the power
spectra with no background flow and a differential rotation profile, respectively. The comparisons show good
agreement between the simulated power spectra ridge positions with those reported by [2] and [3]. While
there is general agreement we note that due to the chosen background parameters (model S) the mode fre-
quencies overestimate those in the observations [5]. Comparisons of a simulated temporal cross-covariance
(time-distance diagram) and that which was reported by [4] agree well with the low number skip branches, but
there is still some improvement needed in fine tuning the source covariance amplitude to improve agreement
for higher skip branches.
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Figure 2: Top: l-ν power spectrum of the waves computed at the solar surface with no background flow. The blue crosses indicate
the position of the p1 − p8 modes reported by [2], while the blue dashed line shows the observed f -mode ridge which is missing in
this simulation due to the lack of a gravitational term. Right: Temporal cross-covariance function for three angular distances 30◦,
60◦, and 90◦ for the simulations (blue) and the MDI/SOHO/Doppler observations [red dashes, 4].
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Figure 3: Left: Power spectrum Plm(ω) for l = 85 where red crosses mark the
mode frequencies of the rotationally split p-modes from the simulation with the dif-
ferential profile of the right panel. For comparison, the grayscale image shows the
observational power spectrum from the GONG network [3]. Note the side lobes in the
observations are due to aliasing from observing half of the Sun. Right: Differential
rotation profile used in the simulation.

Travel-Time Sensitivity Kernels
In the presence of perturbations to the background model, a perturbation in L occurs which enables the
computation of the change in C. We compute this change δC and determine the corresponding travel-time
difference δτ through,

δτ (rrr1, rrr2) =

∫ ∞
−∞

W ∗(ω)δC(rrr1, rrr2) dω (9)

where W is a weighting function of the unperturbed cross-covariance function. Forward modelling of per-
turbations to the background can produce travel times that are directly comparable to those obtained from
observations and thus enable the testing of models.

However, as is more often the case in reality, the subsurface structures within the sun that cause observed
travel time differences are unknown or disagree with current models. In order to understand the spatial
sensitivity of travel times to these structures, the development of travel time sensitivity kernels K for each
background parameter α is required. This is achieved though the expansion of the perturbed wave operator to
first order (first Born approximation) and the use of C and G,

Kα(rrr1, rrr2, rrr) =−
∫ ∞
−∞

W ∗Lα[G(rrr, rrr2), C(rrr, rrr1)]dω

−
∫ ∞
−∞

W ∗L∗α[G∗(rrr, rrr1), C
∗
(rrr, rrr2)]dω

(10)

where Lα is a bilinear operator dependant upon the model parameters. For each background parameter the
bilinear operator Lα is simple and can be found in [6]. The advantage of the convenient source covariance is
that Eq. 10 combined with Eq 5 makes the computation of the kernels straightforward and efficient, unlike
previous works (eg. [7]).

Figure 4: Mean travel-time sensitivity kernel for sound speed (multiplied by c) between point rrr1 located on the polar axis and point
rrr2 at latitude of 45◦. Left: Cut through the sound-speed kernel cut at radius r = 0.95R�. Top Right: Slice through a plane containing
the two observation points and the centre of the Sun. The green line indicates the position of the ray path. Bottom Left: Slice in a
plane perpendicular to the ray path connecting the two observation points (green square), at equal distance from the two observation
points. In both right hand slices, the black arc of a circle locates radius r = 0.95R� which corresponds to the left panel.

So What Next?
Forward modelling – The present set-up can be very useful to test new methods, include various instrumental
and projection effects, but also to interpret existing travel-time measurements for rotation, meridional circu-
lation, and axisymmetric structures like the average supergranule.

Inversions – Find the parameters δα of the background model (sound speed, density, flows) such that the
travel times from the model are consistent with the observed travel times through the use of non-linear inver-
sions or the iterative application of the kernels.
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