Seismology of the Sun and the Distant Stars 2016 11-15 July 2016, Angra do Heroísmo, Terceira-Açores, Portugal

Looking for Magnetic Fields in Kepler Red Giants

J. Ballot¹, M. Aurière¹, S. Deheuvels¹, R. A. García², F. Lignières¹, S. Mathur³, P. Petit¹

¹ IRAP, CNRS, Université de Toulouse, UPS-OMP, Toulouse, France
² AIM, CEA/DRF, CNRS, Univ. Paris Diderot, IRFU/SAp, Gif s/ Yvette, France
³ Space Science Institute, Boulder, CO, USA

- We observed four *l* = 1 depressed red giants with the spectropolarimeters CFHT/ESPaDOnS and TBL/Narval in 2012 & 2013
 - Circular polarization provides longitudinal magnetic field measurements through Zeeman effect

We detect a polarised signature in Droopy (KIC 8561221)

- This signature is compatible with a 4 G magnetic field
- The signature is stable over 6 months
- We put an upper limit of 2 or 3 G on others targets
- This magnetic field intensity is compatible with red giants in the sample of Aurière et al. (2015)

We choose 4 Kepler red giants with *e*=1 depressed modes at different evolutionary stages

	KIC	Name	V	$T_{\rm eff}$ [K]	$\nu_{max} \left[\mu Hz \right]$	$\log g$	M/M _o	
RG1	8561221	BD+443149	10.08	5230 ± 70	495 ± 20	3.62	1.51 ± 0.19	Droopy
RG2	9073950	TYC 3541-1690-1	11.52	5280 ± 75	295 ± 22	3.40	1.46 ± 0.82	
RG3	11973853	TYC 3565-225-1	11.92	5220 ± 80	200 ± 10	3.23	1.74 ± 0.41	
RG4	3443483	TYC 3134-244-1	11.81	5100 ± 110	130 ± 7	3.05	1.80 ± 0.57	

- Low-amplitude l = 1 modes were reported by Mosser et al. (2012) in a few percents of Kepler red giants.
- The youngest one is KIC 8561221 (Droopy) analysed by García et al. (2014)
- Recent studies by Fuller et al. (2015) explained this behaviour as the signature of a strong buried magnetic field

We observed our sample with CFHT/ESPaDOnS in 2013

- ESPaDOnS is a stellar spectropolarimeter installed at Canada-France-Hawaii Telescope (Mauna Kea Observatory, Hawaii)
- We observed circularly polarized (Stokes V) spectra
- All spectra are processed with the least-squares-deconvolution (LSD) technique (Donati et al. 1997) to extract a mean profile of absorption lines
- Observation times are adjusted to reach a S/N of ~200

Name	V	$T_{\rm eff}$ [K]	$\log g$	Observation sequence	Number of seq.	Total time
BD+443149	10.08	5230	3.62	$4 \times 450 \text{ s}$	1	30 min
TYC 3541-1690-1	11.52	5280	3.40	4 × 675 s	2	1hr 30 min
TYC 3565-225-1	11.92	5220	3.23	$4 \times 900 \text{ s}$	2	2 hrs
TYC 3134-244-1	11.81	5100	3.05	4 × 900 s	2	2 hrs

LSD profiles of RG2 – RG3 – RG4

No significant polarimetric signature has been detected in KIC9073950, KIC11973853 & KIC3443483

The longitudinal magnetic field is smaller than ~2-3 Gauss

For each panel, from top to bottom: V/I LSD profile (circularly polarised spectra), Null LSD profile, and I (Intensity) LSD profile. RG2 & RG3 have been observed two nights. Individual spectra are shown in red and green, and the average is plotted in black

LSD Profiles of Droopy (1)

Observations

- Droopy has been observed two nights with ESPaDOnS:
 - 21/02/2013 (bad S/N)
 - 04/03/2013 (marginal detection)
- The average of the two spectra provides us a <u>significant detection</u> in Stokes V in KIC 8561221
 - Longitudinal magnetic field B ~ 4 G
 - The polarized signature is not purely antisymmetric as expected for a standard Zeeman effect.
 - \rightarrow it still has to be interpreted

See caption above. The first spectrum (21/02/2013) is too noisy to show a significant signature, the detection is marginal in the second one (04/03/2013), the average provides us a significant detection.

LSD Profiles of Droopy (2)

Narval observations

- We also observed Droopy in 2012 with Narval, a twin spectropolarimeter of ESPaDOnS installed at Telescope Bernard Lyot (Pic du Midi Observatory, France)
- We observed Droopy 2 nights (14 & 23/08/2012) without detecting significant polarimetric signature.
- We detect a marginally significant signal in the average of the two spectra.

Comparison between both epochs

- The signatures observed with 2 different instruments at 2 different epochs are very similar
 - → <u>stable signal</u>
 - \rightarrow similar rotation phase (?)

See caption above. The average spectrum observed by Narval in summer 2012 and the one observed by ESPaDOnS in winter 2013 perfectly overlap, this indicates a stable signal.

Comparison with other red giants

Sample of Aurière et al. (2015)

- Aurière et al. (2015) monitored a large sample of red giants looking after magnetic signature
- Some red giants show abnormally large magnetic fields, such as EK Eri. They are suspected to be the descendants of Ap stars
- The majority of objects follow a global trend compatible with a dynamo field generated in the convective envelope

Droopy follows the normal trend

 By assuming a rotation period of 91 days (Garcia et al., 2014)

After Aurière et al. (2015). Maximal longitudinal magnetic field observed in red giants as a function of rotation period. Droopy has been added as a red star.

Université de Toulouse

References

- M. Aurière et al., A&A 574, A90 (2015)
- J. Fuller et al., Science 350, 423 (2015)
- R. A. García et al., A&A 563, A84 (2014)
- B. Mosser et al., A&A 537, A30 (2012)