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Introduction

The challenges in interpreting the pulsations of rapidly rotating stars

theoretical challenges

2D geometry – complicated formulas and numerically demanding
no automatic mode classification procedure

lack of simple frequency patterns

p-modes: superposition of multiple independent patterns
g-modes: varying period separation + numerous inertial modes

amplitudes are difficult to predict (classical pulsators)
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The benefits of non-adiabatic calculations

find out which modes are excited

consistent calculation of δTeff/Teff

amplitude ratios
phase shifts
line profile variations (LPVs)
mode identification
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Previous 2D non-adiabatic pulsation calculations

Reference Model Pulsations
Lee & Baraffe (1995) Chandrasekhar expansion 2 or 3 harmonics
Lee (2001) Spherical 10 harmonics
Savonije (2005, 2007) Spherical 2D calculations
Lee (2008) Chandrasekhar expansion 4 harmonics

Comparisons with traditional approximation

Savonije (2005, 2007): stabilising effect of Coriolis force

Lee (2008): stabilising effect of centrifugal deformation

in all cases, the effects of rotation are approximated

⇒ there is a need for full 2D calculations, with 2D models
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Necessary ingredients for 2D non-adiabatic pulsations

2D rotating models

hydrostatic equilibrium: adiabatic calculations
energy conservation equation: non-adiabatic calculations

a 2D pulsation code which includes non-adiabatic effects

ESTER (models) + TOP (pulsations)
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The ESTER code (a very brief overview)

ESTER = Evolution STEllaire en Rotation

fully includes centrifugal deformation

satisfies energy conservation equation:

baroclinic (isobars 6= isochores 6= isotherms)
self-consistent 2D rotation profile

(Rieutord & Espinosa Lara, 2009)
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The TOP pulsation code

TOP = Two-dimensional Oscillation Program

fully includes centrifugal deformation

can handle baroclinic models

includes non-adiabatic effects

http://johnmannophoto.com/blog/?p=103
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Pulsation equations

Continuity equation (conservation of mass)

0 =
δρ

ρo
+ ~∇ · ~ξ

Poisson’s equation

0 = ∆Ψ− 4πG

(
ρo
δρ

ρo
− ~ξ · ~∇ρo

)

δρ = Lagrangian density perturbation

ρo = equilibrium density profile
~ξ = Lagrangian displacement

Ψ = Eulerian perturbation to the gravitational potential
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Pulsation equations

Euler’s equations (conservation of momentum)

0 = [ω + mΩ]2 ~ξ − 2i~Ω× [ω + mΩ] ~ξ − ~Ω×
(
~Ω× ~ξ

)
− ~ξ · ~∇

(
$Ω2~e$

)
− Po

ρo
~∇
(
δP

Po

)
+
~∇Po

ρo

(
δρ

ρo
− δP

Po

)
− ~∇Ψ

+ ~∇

(
~ξ · ~∇Po

ρo

)
+

(
~ξ · ~∇Po

)
~∇ρo −

(
~ξ · ~∇ρo

)
~∇Po

ρ2o

ω = pulsation frequency

m = azimuthal order

Ω = rotation profile

$ = distance to the rotation axis

δP = Lagrangian pressure perturbation
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Pulsation equations

Energy conservation equation

unperturbed form:

ρoTo
dSo
dt

= εoρo − ~∇ · ~Fo

perturbed form:

i [ω + mΩ] ρoToδS = εoρo

(
δε

εo
+
δρ

ρo

)
− ~∇ · δ~F

+ ~ξ · ~∇
(
~∇ · ~Fo

)
− ~∇ ·

[(
~ξ · ~∇

)
~Fo

]

δ~F = Lagrangian perturbation to the energy flux

δS = Lagrangian entropy perturbation

δε = Lagrangian perturbation to the energy production
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Pulsation equations

Energy flux

total energy flux
~Fo = ~FR

o + ~FC
o

unperturbed form of radiative energy flux:

~FR
o = −4acT 3

o

3κoρo
~∇To = −χo

~∇To

perturbed form of radiative energy flux:

δ~FR =

[
(1 + χT )

δT

To
+ χρ

δρ

ρo

]
~FR
o

− χo

[
To
~∇
(
δT

To

)
+ ~ξ · ~∇

(
~∇To

)
− ~∇

(
~ξ · ~∇To

)]
frozen convection approximation:

δ~FC ' ~0
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Pulsation equations

Equation of state, opacities, and nuclear reaction rates

δP

Po
= Γ1

δρ

ρo
+ PT

δS

cv
= Pρ

δρ

ρo
+ PT

δT

To

δT

To
=

δS

cv
+ (Γ3 − 1)

δρ

ρo
=
δS

cp
+∇ad

δP

Po

δχ

χo
= χρ

δρ

ρo
+ χT

δT

To

δε

εo
= εT (ω)

δT

To
+ ερ(ω)

δρ

ρo

in what follows we will neglect δε
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Pulsation equations

Boundary conditions

in the centre: regularity conditions

at infinity: gravitational potential perturbation goes to zero

at the surface:

∇vert.

(
δP

Po

)
= 0

4
δT

To
=

δFR

FR
o
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Pulsation equations

Summary

final result: a system of 10 equations with 10 unknowns:

δP

Po
, ~ξ,

δS

cp
, δ~FR,

δT

To
, Ψ (1)

although some of these variables can be cancelled algebraically, they
are needed to ensure good convergence

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models



Introduction Theory Results Amplitude ratios LPVs Conclusion

Work integral

it is possible to derive an integral expression for the complex
frequencies:

Aω2 + 2Bω + C = 0

where

A =

∫
V

ρ0ξ
2dV,

B =

∫
V

ρ0

[
mΩξ2 − i~Ω ·

(
~ξ × ~ξ∗

)]
dV,

<(C ) = a complicated expression

=(C ) = −
∫
V

=
{
δPδρ∗

ρ0

}
dV

From this we deduce the excitation rate:

=(ω) = − =(C )

2 (A<(ω) + B)
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Comparison with Lee & Baraffe (1995)

Lee & Baraffe (1995) Current work
Model based on 2D baroclinic

Chandrasekhar expansion model
Eulerian perturbations Lagrangian perturbations

~FC = 0 δ~FC = 0
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Numerical implementation

explicit expression in spheroidal coordinates

projection onto spherical harmonics

radial discretisation using Chebyshev polynomials

Nr Nh Memory (in Gb) Time (in min) Num. proc.
400 10 3.5
400 15 7.9
400 20 13.4 5 4
400 29 28.0 10 8
400 40 52.7 22 8
400 50 82.3 26 16
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Estimated accuracy

the problem is stiff: reduced numerical accuracy

estimated accuracy based on variational expression:

frequencies: ∼ 10−4

excitation/damping rates: 10−2 to 10−1
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Description

Model

9 M� models

Ω = 0.0 to 0.8 ΩK

z = 0.025

OPAL opacities

Modes

β Cep type pulsations

p and g modes

excited by iron opacity bump at log(T ) = 5.3
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Frequencies
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Frequencies

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models



Introduction Theory Results Amplitude ratios LPVs Conclusion

Damping rates
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Island modes
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Whispering gallery modes
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Mixed modes

see Ouazzani et al. (2015) for mixed modes in the adiabatic case
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Rosette modes

also see Takata & Saio (2015) for non-adiabatic effects on Rosette
modes and associated angular momentum transport
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Multiplets – inertial frame
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prograde modes remain unstable longer

Lee (2008) also found a preference for prograde modes
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Multiplets – corotating frame
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Work integral

Acoustic Work Work (vs. logT )

red = driving regions

blue = damping regions
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Work integral

obtained by integrating in horizontal direction + vertical
anti-derivative
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A multiplet

rotation rate = 0.0 ΩK, ε = 0
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A multiplet

rotation rate = 0.1 ΩK, ε = 4.9× 10−3
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A multiplet

rotation rate = 0.2 ΩK, ε = 1.9× 10−2

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models



Introduction Theory Results Amplitude ratios LPVs Conclusion

A multiplet

rotation rate = 0.3 ΩK, ε = 4.3× 10−2
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A multiplet

rotation rate = 0.4 ΩK, ε = 7.4× 10−2
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A multiplet

rotation rate = 0.5 ΩK, ε = 11.2× 10−2
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A multiplet

rotation rate = 0.6 ΩK, ε = 15.5× 10−2

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models
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A multiplet

m = 0 m = −2 m = 2
Stable Excited Stable

rotation rate = 0.4 ΩK, ε = 7.4× 10−2

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models
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Amplitude ratios

Previous works

Daszyńska-Daszkiewicz et al. (2002, 2007), Townsend (2003)

non-adiabatic treatment
approximate treatment of rotation

Reese et al. (2013) (see also Lignières et al. 2006, Lignières &
Georgeot 2009)

full treatment of rotation
adiabatic calculations

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models
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Equations

non-pulsating star:

I =

∫∫
Vis.Surf.

I (geff ,Teff , µ)~eobs. · ~dS

pulsating star:

δI =

∫∫
δVis.Surf.

I (geff ,Teff , µ)~eobs. · ~dS

+

∫∫
Vis.Surf.

δI (geff ,Teff , µ)~eobs. · ~dS

+

∫∫
Vis.Surf.

I (geff ,Teff , µ)~eobs. · δ( ~dS)
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Introduction Theory Results Amplitude ratios LPVs Conclusion

Equations

First term ∫∫
δS

. . .~eobs. · ~dS ∝ ξ2 ⇒ negligible

Second term

δI = I ·
(

∂ ln I

∂ lnTeff

δTeff

Teff
+

∂ ln I

∂ ln geff

δgeff

geff

)
+
∂I

∂µ
δµ

δTeff

Teff
, δgeff

geff
, and δµ are deduced from the pulsation mode

see next slide for I and its derivatives

Third term

δ( ~dS) is deduced from the Lagrangian displacement

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models
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Intensities

I (Teff , geff , µ) = I0(Teff , geff)h(µ,Teff , geff)

I0(Teff , geff) from blackbody spectrum

h(µ,Teff , geff) from Claret (2000)

bolometric, Strömgren, and Johnson-Cousins photometric bands

Bolometric Strömgren, u

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models
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Various profiles
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Various profiles
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Amplitude ratios for an ` = 3 multiplet (i = 30◦)

300 400 500 600 700 800 900
Wavelength (in nm)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Am
pl
itu

de
 ra

tio

Stable
Unstable
Ω/ΩK=0.0

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models



Introduction Theory Results Amplitude ratios LPVs Conclusion
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Amplitude ratios for an ` = 3 multiplet (i = 30◦)
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Amplitude ratios for an ` = 3 multiplet (i = 30◦)
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Amplitude ratios for an ` = 3 multiplet (i = 30◦)
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Amplitude ratios for an ` = 3 multiplet (i = 30◦)
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Amplitude ratios for an (` = 2,m = 0) mode
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Amplitude ratios for an (` = 2,m = 0) mode
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Amplitude ratios for an (` = 2,m = 0) mode
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Amplitude ratios for an (` = 2,m = 0) mode
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Amplitude ratios for an (` = 2,m = 0) mode
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Amplitude ratios for an (` = 2,m = 0) mode
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Line Profile Variations (LPVs)

Previous works

Clement (1994): 2D calculations

Townsend (1997): the traditional approximation

Description

includes Doppler shifts and δ( ~dS)

δTeff and δgeff neglected

use of blackbody spectrum (incl. gravity darkening)

rudimentary description of limb darkening
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Increasing rotation rates
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Increasing rotation rates
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Increasing rotation rates
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Increasing rotation rates
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Conclusion

important step forward:

can now predict which modes are unstable
can calculate amplitude ratios and LPVs

Prospects

understand how rotation (de)stabilise modes

what are the differences between prograde and retrograde modes

include more realistic atmosphere

identify modes

Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models
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