
Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	0000000000000	00000000000	000000	000	

Non-adiabatic pulsations in ESTER models

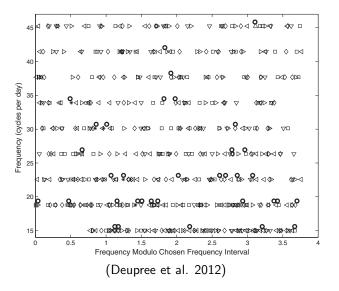
D. R. Reese¹, M.-A. Dupret², and M. Rieutord³

¹LESIA, ²ULg, ³IRAP

July 12, 2016

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	000000000000	0000000	000	
Introdu	ction				

The challenges in interpreting the pulsations of rapidly rotating stars


theoretical challenges

- 2D geometry complicated formulas and numerically demanding
- no automatic mode classification procedure
- lack of simple frequency patterns
 - p-modes: superposition of multiple independent patterns
 - g-modes: varying period separation + numerous inertial modes
- amplitudes are difficult to predict (classical pulsators)

Introduction	Theory	Results	Amplitude ratios

Conclusion

LPVs

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
The ben	efits of non-a	diabatic calc	ulations		

- find out which modes are excited
- consistent calculation of $\delta \, T_{\rm eff} / \, T_{\rm eff}$
 - amplitude ratios
 - phase shifts
 - line profile variations (LPVs)
 - mode identification

Introduction	Theory 000000000000000000	Results	Amplitude ratios	LPVs	Conclusion
Previous	2D non-adiab	atic pulsation	n calculatio	ons	

Reference	Model	Pulsations
Lee & Baraffe (1995)	Chandrasekhar expansion	2 or 3 harmonics
Lee (2001)	Spherical	10 harmonics
Savonije (2005, 2007)	Spherical	2D calculations
Lee (2008)	Chandrasekhar expansion	4 harmonics

Comparisons with traditional approximation

- Savonije (2005, 2007): stabilising effect of Coriolis force
- Lee (2008): stabilising effect of centrifugal deformation

Introduction	Theory 0000000000000000000	Results 000000000000	Amplitude ratios	LPVs 000	Conclusion
Previous	2D non-adiab	atic pulsation	n calculation	ns	

Reference	Model	Pulsations
Lee & Baraffe (1995)	Chandrasekhar expansion	2 or 3 harmonics
Lee (2001)	Spherical	10 harmonics
Savonije (2005, 2007)	Spherical	2D calculations
Lee (2008)	Chandrasekhar expansion	4 harmonics

Comparisons with traditional approximation

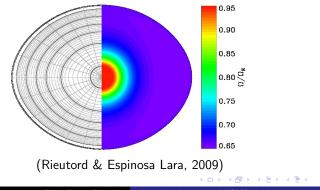
- Savonije (2005, 2007): stabilising effect of Coriolis force
- Lee (2008): stabilising effect of centrifugal deformation

• in all cases, the effects of rotation are approximated

 $\Rightarrow\,$ there is a need for full 2D calculations, with 2D models

Introduction	Theory ●OO00000000000000000000000000000000000	Results	Amplitude ratios	LPVs 000	Conclusion
Necessar	y ingredients [.]	for 2D non-a	diabatic pu	Ilsations	

- 2D rotating models
 - hydrostatic equilibrium: adiabatic calculations
 - energy conservation equation: non-adiabatic calculations
- a 2D pulsation code which includes non-adiabatic effects


Introduction Theory Results Amplitude ratios LPVs Conclusion

- 2D rotating models
 - hydrostatic equilibrium: adiabatic calculations
 - energy conservation equation: non-adiabatic calculations
- a 2D pulsation code which includes non-adiabatic effects

ESTER (models) + TOP (pulsations)

- ESTER = Evolution STEllaire en Rotation
- fully includes centrifugal deformation
- satisfies energy conservation equation:
 - baroclinic (isobars \neq isochores \neq isotherms)
 - self-consistent 2D rotation profile

Introduction	Theory OO ● OOOOOOOOOOOOO	Results	Amplitude ratios	LPVs 000	Conclusion
The TOP	^{>} pulsation co	de			

- TOP = Two-dimensional Oscillation Program
- fully includes centrifugal deformation
- can handle baroclinic models
- includes non-adiabatic effects

http://johnmannophoto.com/blog/?p=103

Introduction	Theory ○○○●○○○○○○○○	Results	Amplitude ratios	LPVs	Conclusion
Pulsatior	n equations				

Continuity equation (conservation of mass)

$$\mathbf{0} = \frac{\delta\rho}{\rho_o} + \vec{\nabla}\cdot\vec{\xi}$$

Poisson's equation

$$0 = \Delta \Psi - 4\pi G \left(\rho_o \frac{\delta \rho}{\rho_o} - \vec{\xi} \cdot \vec{\nabla} \rho_o \right)$$

 $\delta\rho~=~$ Lagrangian density perturbation

$$o_o \hspace{0.1 cm} = \hspace{0.1 cm}$$
 equilibrium density profile

$$ar{\xi}$$
 $=$ Lagrangian displacement

 Ψ = Eulerian perturbation to the gravitational potential

(本部) (本語) (本語) (二語

Introduction	Theory ○○○○●○○○○○○○	Results	Amplitude ratios	LPVs 000	Conclusion
Dulcation	equations				

Pulsation equations

Euler's equations (conservation of momentum)

$$0 = [\omega + m\Omega]^{2} \vec{\xi} - 2i\vec{\Omega} \times [\omega + m\Omega] \vec{\xi} - \vec{\Omega} \times (\vec{\Omega} \times \vec{\xi})$$

$$- \vec{\xi} \cdot \vec{\nabla} (\varpi\Omega^{2}\vec{e}_{\varpi}) - \frac{P_{o}}{\rho_{o}}\vec{\nabla} \left(\frac{\delta P}{P_{o}}\right) + \frac{\vec{\nabla}P_{o}}{\rho_{o}} \left(\frac{\delta\rho}{\rho_{o}} - \frac{\delta P}{P_{o}}\right) - \vec{\nabla}\Psi$$

$$+ \vec{\nabla} \left(\frac{\vec{\xi} \cdot \vec{\nabla}P_{o}}{\rho_{o}}\right) + \frac{\left(\vec{\xi} \cdot \vec{\nabla}P_{o}\right)\vec{\nabla}\rho_{o} - \left(\vec{\xi} \cdot \vec{\nabla}\rho_{o}\right)\vec{\nabla}P_{o}}{\rho_{o}^{2}}$$

- ω = pulsation frequency
- m = azimuthal order
- $\Omega ~=~ \text{rotation profile}$
- $\varpi~=~$ distance to the rotation axis
- δP = Lagrangian pressure perturbation

Introduction	Theory ○○○○○●○○○○○○○○	Results	Amplitude ratios	LPVs	Conclusion
Pulsatio	n equations				

Energy conservation equation

• unperturbed form:

$$\rho_o T_o \frac{dS_o}{dt} = \epsilon_o \rho_o - \vec{\nabla} \cdot \vec{F}_o$$

o perturbed form:

$$i [\omega + m\Omega] \rho_o T_o \delta S = \epsilon_o \rho_o \left(\frac{\delta \epsilon}{\epsilon_o} + \frac{\delta \rho}{\rho_o}\right) - \vec{\nabla} \cdot \delta \vec{F} + \vec{\xi} \cdot \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F}_o\right) - \vec{\nabla} \cdot \left[\left(\vec{\xi} \cdot \vec{\nabla}\right) \vec{F}_o\right]$$

- $\delta \vec{F}$ = Lagrangian perturbation to the energy flux
- δS = Lagrangian entropy perturbation
- $\delta \epsilon ~~=~$ Lagrangian perturbation to the energy production

Introduction	Theory ○○○○○○●○○○○○○	Results	Amplitude ratios	LPV s 000	Conclusion
Pulsatio	n equations				

Energy flux

• total energy flux

$$ec{F}_o = ec{F}_o^{
m R} + ec{F}_o^{
m C}$$

• unperturbed form of radiative energy flux:

$$ec{F}_{o}^{\mathrm{R}}=-rac{4acT_{o}^{3}}{3\kappa_{o}
ho_{o}}ec{
abla}T_{o}=-\chi_{o}ec{
abla}T_{c}$$

• perturbed form of radiative energy flux:

$$\begin{split} \delta \vec{F}^{\mathrm{R}} &= \left[\left(1 + \chi_{T} \right) \frac{\delta T}{T_{o}} + \chi_{\rho} \frac{\delta \rho}{\rho_{o}} \right] \vec{F}_{o}^{\mathrm{R}} \\ &- \chi_{o} \left[T_{o} \vec{\nabla} \left(\frac{\delta T}{T_{o}} \right) + \vec{\xi} \cdot \vec{\nabla} \left(\vec{\nabla} T_{o} \right) - \vec{\nabla} \left(\vec{\xi} \cdot \vec{\nabla} T_{o} \right) \right] \end{split}$$

• frozen convection approximation:

$$\delta \vec{F}^{\mathrm{C}} \simeq \vec{\mathsf{0}}$$

Introduction	Theory ○○○○○○●○○○○○○	Results	Amplitude ratios	LPVs 000	Conclusion
Pulsation	equations				

Equation of state, opacities, and nuclear reaction rates

$$\begin{split} \frac{\delta P}{P_o} &= \Gamma_1 \frac{\delta \rho}{\rho_o} + P_T \frac{\delta S}{c_v} = P_\rho \frac{\delta \rho}{\rho_o} + P_T \frac{\delta T}{T_o} \\ \frac{\delta T}{T_o} &= \frac{\delta S}{c_v} + (\Gamma_3 - 1) \frac{\delta \rho}{\rho_o} = \frac{\delta S}{c_p} + \nabla_{ad} \frac{\delta P}{P_o} \\ \frac{\delta \chi}{\chi_o} &= \chi_\rho \frac{\delta \rho}{\rho_o} + \chi_T \frac{\delta T}{T_o} \\ \frac{\delta \epsilon}{\epsilon_o} &= \epsilon_T(\omega) \frac{\delta T}{T_o} + \epsilon_\rho(\omega) \frac{\delta \rho}{\rho_o} \end{split}$$

• in what follows we will neglect $\delta\epsilon$

∃⇒

Introduction	Theory ○○○○○○○●○○○○○	Results	Amplitude ratios	LPVs 000	Conclusion
Pulsation	equations				

Boundary conditions

- in the centre: regularity conditions
- at infinity: gravitational potential perturbation goes to zero
- at the surface:

$$\nabla_{\text{vert.}} \left(\frac{\delta P}{P_o} \right) = 0$$
$$4 \frac{\delta T}{T_o} = \frac{\delta F^{\text{R}}}{F_o^{\text{R}}}$$

Introduction	Theory ○○○○○○○○●○○○○	Results	Amplitude ratios	LPVs 000	Conclusion
Pulsation	n equations				

Summary

• final result: a system of 10 equations with 10 unknowns:

$$\frac{\delta P}{P_o}, \quad \vec{\xi}, \quad \frac{\delta S}{c_{\rm p}}, \quad \delta \vec{F}^{\rm R}, \quad \frac{\delta T}{T_o}, \quad \Psi$$
 (1)

• although some of these variables can be cancelled algebraically, they are needed to ensure good convergence

Introduction	Theory ○○○○○○○○○●○○○	Results 000000000000	Amplitude ratios	LPV s 000	Conclusion
Work ir	ntegral				

• it is possible to derive an integral expression for the complex frequencies:

$$A\omega^2 + 2B\omega + C = 0$$

where

$$A = \int_{V} \rho_{0}\xi^{2} dV,$$

$$B = \int_{V} \rho_{0} \left[m\Omega\xi^{2} - i\vec{\Omega} \cdot \left(\vec{\xi} \times \vec{\xi}^{*}\right) \right] dV$$

$$\Re(C) = \text{a complicated expression}$$

$$\Im(C) = -\int_{V} \Im\left\{ \frac{\delta P \delta \rho^{*}}{\rho_{0}} \right\} dV$$

• From this we deduce the excitation rate:

$$\Im(\omega) = -\frac{\Im(C)}{2(A\Re(\omega) + B)}$$

Introdu	iction	Theory ○○○○○○○○○○●○○	Results 000000000000	Amplitude ratios	LPV s 000	Conclusion
Со	mparis	on with Lee &	2 Baraffe (1	.995)		
		Lee & Baraffe	(1995)	Current work		
		Model based	on	2D baroclinic		
		Chandrasekhar ex	pansion	model		
		Eulerian perturb	ations Lagra	angian perturbatio	ns	
		$\vec{F}^{\mathrm{C}} = 0$		$\delta ec{F}^{ ext{C}} = 0$		

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Introduction	Theory ○○○○○○○○○○●○	Results	Amplitude ratios	LPVs 000	Conclusion
Numerica	al implementa	tion			

- explicit expression in spheroidal coordinates
- projection onto spherical harmonics
- radial discretisation using Chebyshev polynomials

$N_{\rm r}$	$N_{ m h}$	Memory (in Gb)	Time (in min)	Num. proc.
400	10	3.5		
400	15	7.9		
400	20	13.4	5	4
400	29	28.0	10	8
400	40	52.7	22	8
400	50	82.3	26	16

Introduction	Theory ○○○○○○○○○○○○○○	Results 000000000000	Amplitude ratios	LPVs	Conclusion
Estimate	ed accuracy				

- the problem is stiff: reduced numerical accuracy
- estimated accuracy based on variational expression:
 - $\bullet~frequencies:~\sim 10^{-4}$
 - $\bullet\,$ excitation/damping rates: 10^{-2} to 10^{-1}

Introduction	Theory 00000000000000000	Results	Amplitude ratios	LPVs 000	Conclusion
Descript	ion				

Model

- $\bullet~9~M_\odot$ models
- $\Omega = 0.0$ to $0.8 \,\Omega_K$
- *z* = 0.025
- OPAL opacities

Modes

- β Cep type pulsations
- p and g modes
- excited by iron opacity bump at log(T) = 5.3

米 医 ト 二 臣

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	•••••	0000000	000	

Frequencies

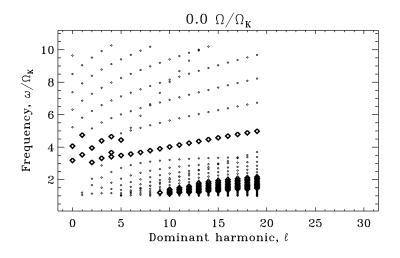
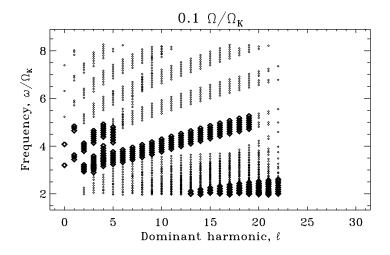
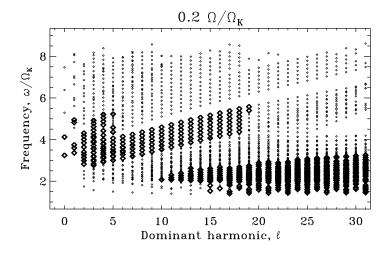



표 🕨 🗉 표

ntroduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	0000000000000	••••••	0000000	000	
-	•				

In

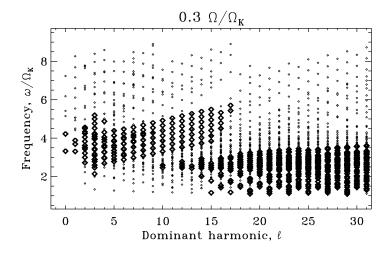


э

oduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	• 0 0000000000	0000000	000	

Frequencies

Intro

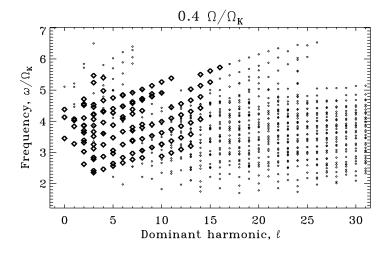


.

э

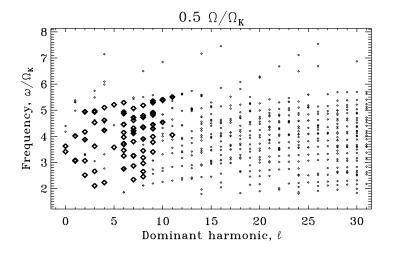
Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	•••••	0000000	000	
F					

Frequencies

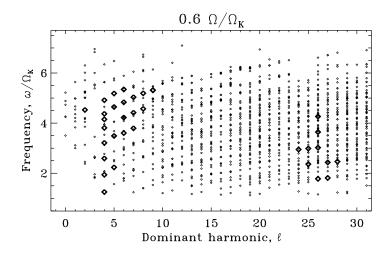


∢ 臣 ▶

æ

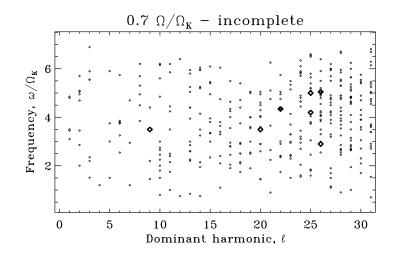

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
		• 0 0000000000			
Eroquono					

문 🕨 문

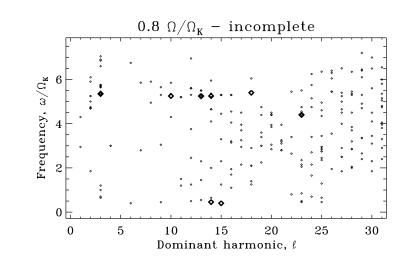

Introduction	Theory 0000000000000000000	Results ●OOOOOOOOOOO	Amplitude ratios	LPVs 000	Conclusion
Frequenc	cies				

э

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
		• 0 0000000000			
Гисанись					

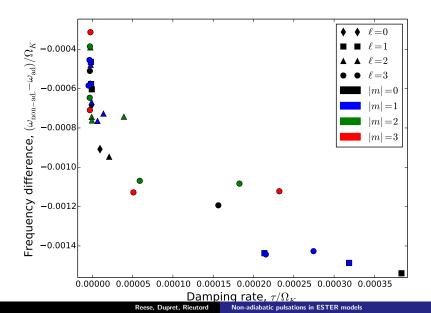


< ∃ →


æ

Introduction	Theory 000000000000000	Results •••••••	Amplitude ratios	LPVs 000	Conclusion
Frequen	cies				

ㅋ ㅋ


Introduction	Theory 00000000000000000	Results ●OOOOOOOOOO	Amplitude ratios	LPVs 000	Conclusion
Frequence	cies				

∃ ⊳

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	00000000000	0000000	000	
Damping	rates				

ъ

900

 $\omega = 4.518$ 2, -1

 $\omega = 4.676$ 9, -1°

 $\omega = 4.799$ 16, -3*

 $\omega = 4.980$

6.)

0 23

 $\omega = 5.384$ 30, -3^{*}

 $\omega = 5.143$ 25. -3°

 $\omega = 4.625$ 7, -3*

 $\omega = 4.788$ 14, -1⁻

 $\omega = 5.730$ 35, -37

SQC.

 $\Omega = 0.4 \ \Omega k$

 $\omega = 4.686$ 10, -2*

 $\omega = \frac{4.537}{3}, -3^{\circ}$

 $\substack{\omega = 4.830 \\ 17, -3^{\circ}}$

 $\omega = 4.713$ 11, -2*

 $\omega = 4.557$ 4, -17

 $\omega = 4.849$ 18, -3

 $\omega = 4.582$ 6, -27

 $\substack{\omega = 2.109 \\ 1, 3^*}$

.0%

00

0

 $\substack{\omega = & 3.622 \\ 23, & 0^* \end{bmatrix}$

 $\omega = 2.233$ 2, 3

 $\omega = \frac{2.872}{9}$

.0.

 $\substack{\omega = 3.059\\11}, 1^*$

 $\omega = 3.405$ 18, 1*

.0.

10

 $\omega = 3.692$ 25. 0*

 $\omega = 2.518$ 5, 2*

 $\omega = 3.183$ 14. 1

 $\omega = 3.252$ 15, 1°

0

 $\substack{\omega = 3.582 \\ 22, 0^{\circ}}$

 $\omega = \frac{3.877}{29}, -1^{-1}$

 $\substack{\omega=\ 3.263\ 17,\ 1^*}$

 $\substack{\omega = 3.627\\24, 0^*}$

 $\substack{\omega = & 3.903 \\ & 30, & 0^* \end{tabular}$

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 三

 $\Omega = 0.5 \ \Omega k$

0 10

 $\substack{\omega = 3.066\\12, 1^{\circ}}$

 $\omega = 3.413$ 19, 0*

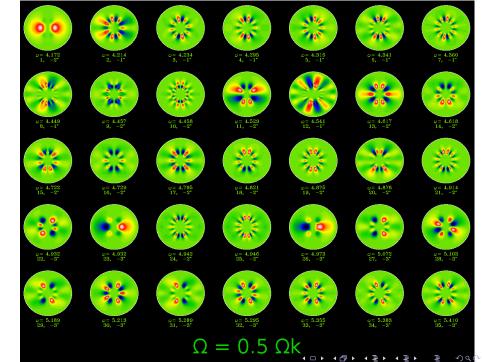
 $\substack{\omega = \\ 26, 0^*}$

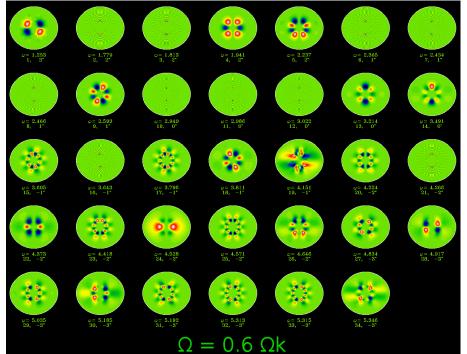
 $\substack{\omega=\ 3.778\ 27,\ 0^*}$

 $\substack{\omega = 3.464 \\ 21, 0^*}$

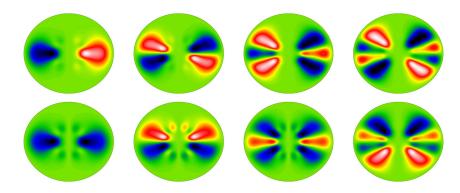
0 0

111

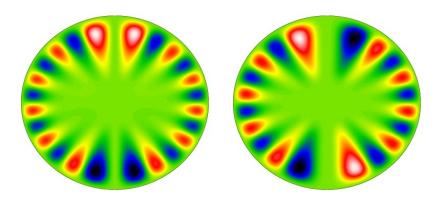

 $\substack{\omega = 3.451 \\ 20, 1^{\circ}}$



 $\substack{\omega = & 3.086 \\ 13, & 1^* }$

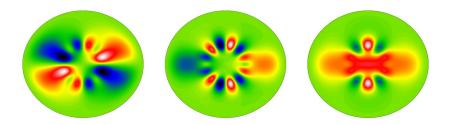


▲□▶ ▲□▶ ▲壹▶ ▲壹▶ 壹 ∽)<(?


Introduction	Theory 0000000000000000000	Results	Amplitude ratios	LPVs	Conclusion
Island m	odes				

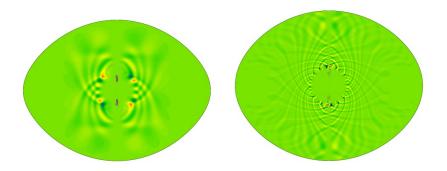
▲ 臣 ▶ | ▲ 臣 ▶ |

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	000000000000000000000000000000000000000	0000000	000	
\	utur ar ang Harmanaa	a al a a			


Whispering gallery modes

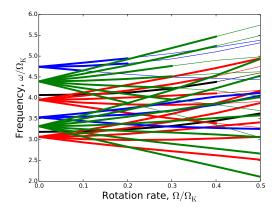
▲ 문 ▶ | ▲ 문 ▶

< 🗇 🕨


Introduction	Theory 000000000000000000	Results ○○○○○●○○○○○○	Amplitude ratios	LPVs 000	Conclusion
Mixed m	odes				

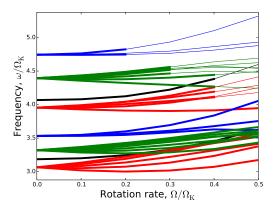
• see Ouazzani et al. (2015) for mixed modes in the adiabatic case

∃⇒


Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
		000000000000			
Rosette	modes				

• also see Takata & Saio (2015) for non-adiabatic effects on Rosette modes and associated angular momentum transport

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	000000000000	0000000	000	

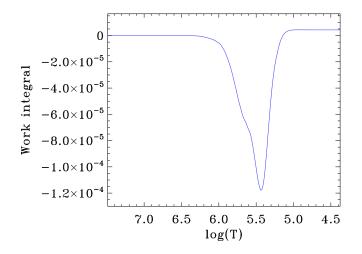

Multiplets – inertial frame

- prograde modes remain unstable longer
- Lee (2008) also found a preference for prograde modes

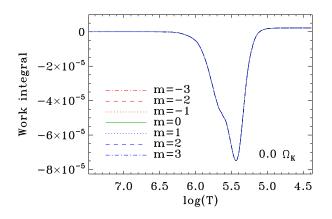
	000000000000000000000000000000000000000	0000000000000	0000000	000	
Multiple	ata corotati	ag frama			

Multiplets – corotating frame

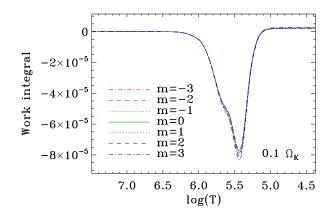
- prograde modes remain unstable longer
- Lee (2008) also found a preference for prograde modes


Introduction	Theory 000000000000000	Results ○○○○○○○●○○○	Amplitude ratios	LPVs 000	Conclusion
Work ir	ntegral				

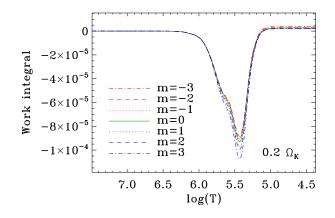
- red = driving regions
- blue = damping regions


Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	0000000000000	0000000	000	
A / . . ! .					

Work integral

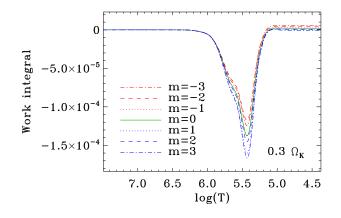

 obtained by integrating in horizontal direction + vertical anti-derivative

Introduction	Theory 000000000000000000000000000000000000	Results ○○○○○○○○●○	Amplitude ratios	LPV s 000	Conclusion
A multip	let				

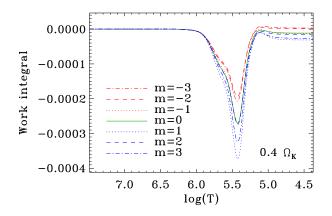

• rotation rate = 0.0 $\Omega_{\rm K}$, $\varepsilon = 0$

Introduction	Theory 00000000000000000	Results ○○○○○○○○○●○	Amplitude ratios	LPVs	Conclusion
A multip	let				

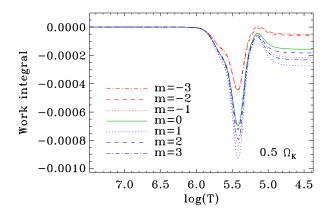
• rotation rate = 0.1 $\Omega_{\rm K}$, $\varepsilon = 4.9 imes 10^{-3}$


Introduction	Theory 00000000000000000	Results ○○○○○○○○○●○	Amplitude ratios	LPVs	Conclusion
A multip	let				

• rotation rate = 0.2 $\Omega_{
m K}$, $arepsilon = 1.9 imes 10^{-2}$

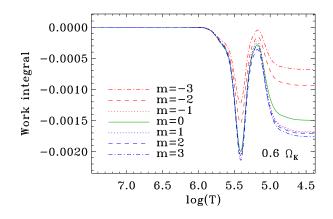

Introduction	Theory 000000000000000000	Results ○○○○○○○○○●○	Amplitude ratios	LPVs 000	Conclusion
A moultin	lat				

• rotation rate = 0.3 $\Omega_{\rm K}$, $\varepsilon = 4.3 imes 10^{-2}$


Introduction	Theory 0000000000000000000	Results ○○○○○○○○○●○	Amplitude ratios	LPVs	Conclusion
A multip	let				

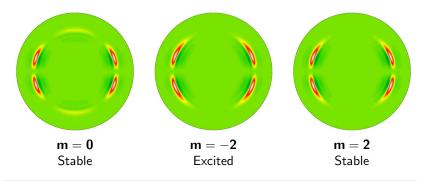
• rotation rate = $0.4~\Omega_{
m K},~arepsilon=7.4 imes10^{-2}$

표 🕨 🗉 표


Introduction	Theory 0000000000000000000	Results ○○○○○○○○○●○	Amplitude ratios	LPVs	Conclusion
A multip	let				

• rotation rate = $0.5 \ \Omega_{\rm K}$, $\varepsilon = 11.2 \times 10^{-2}$

표 🕨 🗉 표


Introduction	Theory 0000000000000000	Results ○○○○○○○○○●○	Amplitude ratios	LPVs	Conclusion
Δ multin	let				

• rotation rate = 0.6 $\Omega_{\rm K}$, $\varepsilon = 15.5 \times 10^{-2}$

표 🕨 🗉 표

Introduction	Theory 0000000000000000000	Results ○○○○○○○○○○●	Amplitude ratios	LPVs	Conclusion
A multip	olet				

• rotation rate = 0.4 $\Omega_{\rm K}$, $\varepsilon = 7.4 \times 10^{-2}$

< ∃ >

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	000000000000	000000	000	
Amplitu	ida ration				

Amplitude ratios

Previous works

- Daszyńska-Daszkiewicz et al. (2002, 2007), Townsend (2003)
 - non-adiabatic treatment
 - approximate treatment of rotation
- Reese et al. (2013) (see also Lignières et al. 2006, Lignières & Georgeot 2009)
 - full treatment of rotation
 - adiabatic calculations

Introduction	Theory 0000000000000000000	Results	Amplitude ratios ○●○○○○○	LPVs	Conclusion
Equation	S				

• non-pulsating star:

$$\mathcal{I} = \iint_{\mathrm{Vis.Surf.}} I(\mathbf{g}_{\mathrm{eff}}, T_{\mathrm{eff}}, \mu) \vec{\mathbf{e}}_{\mathrm{obs.}} \cdot \vec{dS}$$

• pulsating star:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta & & & \ & \ & & \ &$$

< ∃ →

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
			000000		
Fauatio	ns				

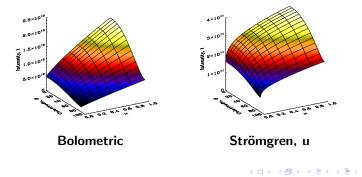
First term

$$\iint_{\delta S} \dots \vec{e}_{\rm obs.} \cdot \vec{dS} \propto \xi^2 \Rightarrow \text{ negligible}$$

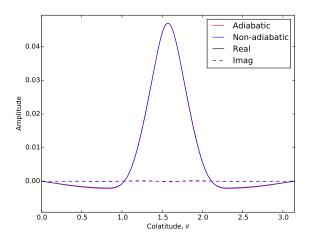
Second term

$$\delta I = I \cdot \left(\frac{\partial \ln I}{\partial \ln T_{\text{eff}}} \frac{\delta T_{\text{eff}}}{T_{\text{eff}}} + \frac{\partial \ln I}{\partial \ln g_{\text{eff}}} \frac{\delta g_{\text{eff}}}{g_{\text{eff}}} \right) + \frac{\partial I}{\partial \mu} \delta \mu$$

• $\frac{\delta T_{\text{eff}}}{T_{\text{eff}}}$, $\frac{\delta g_{\text{eff}}}{g_{\text{eff}}}$, and $\delta \mu$ are deduced from the pulsation mode • see next slide for *I* and its derivatives

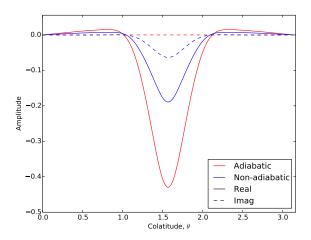

Third term

• $\delta(\vec{dS})$ is deduced from the Lagrangian displacement

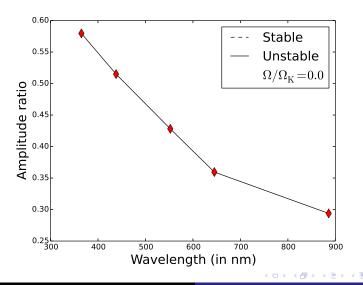

Introduction	Theory 000000000000000000000000000000000000	Results 000000000000	Amplitude ratios ○○○●○○○	LPVs 000	Conclusion
Intens	sities				

$$I(T_{\mathrm{eff}}, g_{\mathrm{eff}}, \mu) = I_0(T_{\mathrm{eff}}, g_{\mathrm{eff}})h(\mu, T_{\mathrm{eff}}, g_{\mathrm{eff}})$$

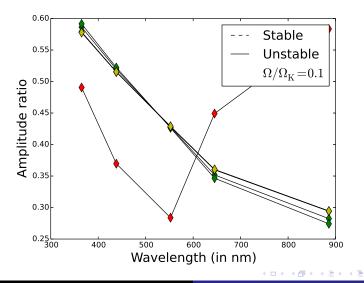
- $I_0(T_{\rm eff},g_{\rm eff})$ from blackbody spectrum
- $h(\mu, T_{\text{eff}}, g_{\text{eff}})$ from Claret (2000)
- bolometric, Strömgren, and Johnson-Cousins photometric bands



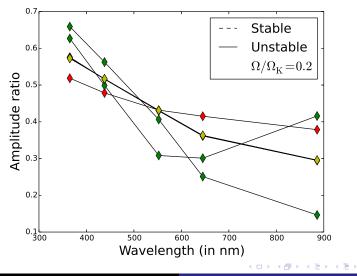
Introduction	Theory 000000000000000000	Results 000000000000	Amplitude ratios	LPVs 000	Conclusion
Various	profiles				

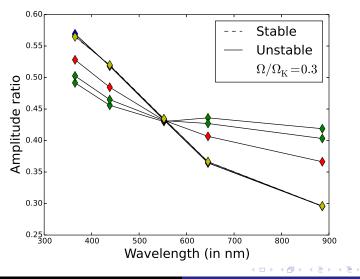

ξr

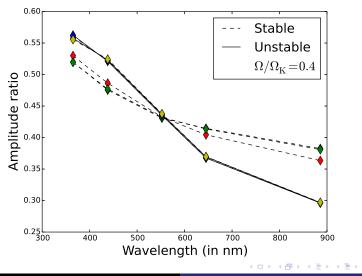
Introduction	Theory 0000000000000000000	Results	Amplitude ratios ○○○○●○○	LPVs 000	Conclusion
Various (orofiles				

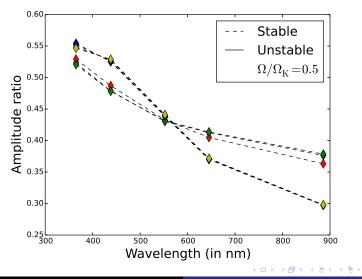


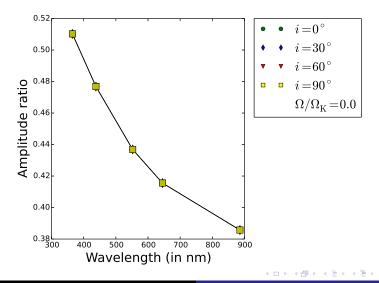
 $\delta T_{\rm eff}/T_{\rm eff}$

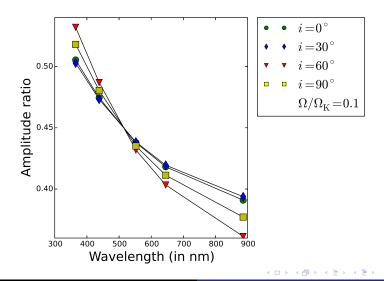




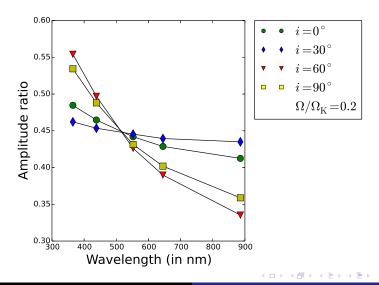


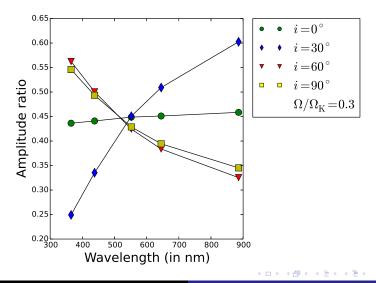


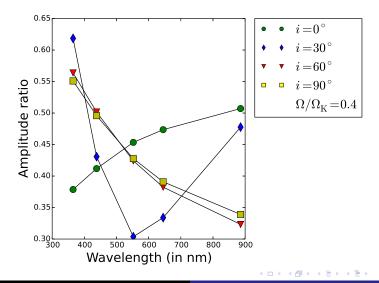


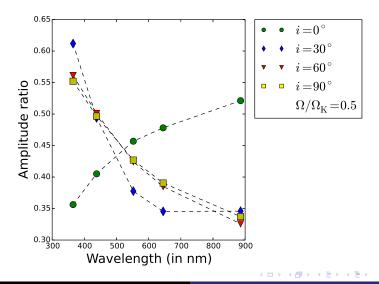


Reese, Dupret, Rieutord Non-adiabatic pulsations in ESTER models

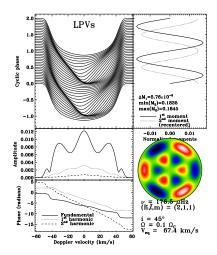






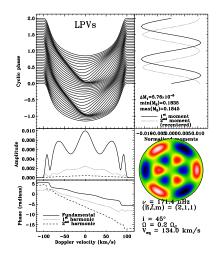


Introduction	Theory 000000000000000000	Results	Amplitude ratios	LPVs ●○○	Conclusion
Line Pro	ofile Variations	(LPVs)			

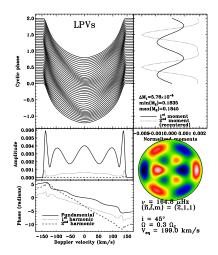

Previous works

- Clement (1994): 2D calculations
- Townsend (1997): the traditional approximation

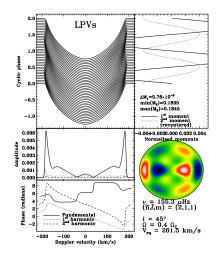
Description


- includes Doppler shifts and $\delta(\vec{dS})$
- δT_{eff} and δg_{eff} neglected
- use of blackbody spectrum (incl. gravity darkening)
- rudimentary description of limb darkening

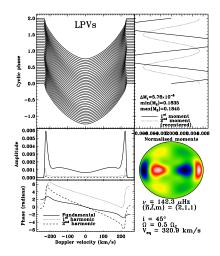
Introduction	Theory 0000000000000000000	Results	Amplitude ratios	LPVs ○●○	Conclusion


→ Ξ → < Ξ →</p>

Introduction	Theory	Results 000000000000	Amplitude ratios	LPVs ○●○	Conclusion


→ Ξ > < Ξ >

Introduction	Theory 0000000000000000	Results	Amplitude ratios	LPVs ○●○	Conclusion


▲ 문 ► ▲ 문 ►

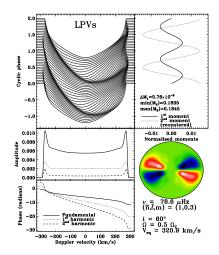
Introduction	Theory	000000	Results 00000000000	LPVs ○●○	Conclusion

< E > < E >

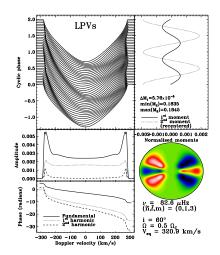
Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	00000000000000	00000000000	0000000	000	

< 注入 < 注入

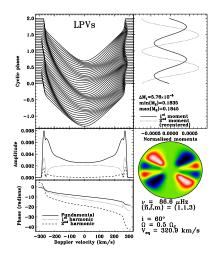
< □ > < 同 >


Introduction	Theory 0000000000000000000	Results 000000000000	Amplitude ratios	LPVs ○○●	Conclusion
Increasir	ng ℓ value				

イロン イ団と イヨン イヨン


Introduction	Theory 0000000000000000000	Results 000000000000	Amplitude ratios	LPVs ○○●	Conclusion
Increasi	ng l value				

▲ 문 ► ▲ 문 ►


Introduction	Theory 0000000000000000000	Results	Amplitude ratios	LPVs ○○●	Conclusion
Increasi	ng ℓ value				

< E > < E >

Introduction	Theory 0000000000000000000	Results 000000000000	Amplitude ratios	LPVs ○○●	Conclusion
Increasin	og ℓ value				

ъ

イロン イ団と イヨン イヨン

Introduction	Theory	Results	Amplitude ratios	LPVs	Conclusion
	0000000000000	00000000000	0000000	000	

Conclusion

- important step forward:
 - can now predict which modes are unstable
 - can calculate amplitude ratios and LPVs

Prospects

- understand how rotation (de)stabilise modes
- what are the differences between prograde and retrograde modes
- include more realistic atmosphere
- identify modes