On the oscillation spectrum of a magnetized core in a giant star

Michel Rieutord

Institut de Recherche en Astrophysique et Planétologie, France

Some words of context

Many giant stars observed with Kepler do not show, or weakly show, dipolar l=1, modes.

Fuller, Cantiello, Stello, Garcia and Bildsten (2015) proposed that this disappearance is caused by magnetic fields hidden in the core of these stars.

Two questions:

- The analysis showing that this is possible is local (WKB). Can we confirm this by global models?
- If yes, can we get more information on the magnetic fields of giants, intensity, geometry, origin?

The scene

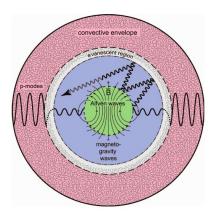


FIGURE - From Fuller et al. 2015

Core conditions

$$10 \le \rho \le 10^5 \text{g/cm}^3$$

$$\nu \sim 10^2 \text{cm}^2/\text{s} \qquad \eta \sim 10^2 \text{cm}^2/\text{s} \qquad \kappa \sim 10^9 \text{cm}^2/\text{s}$$

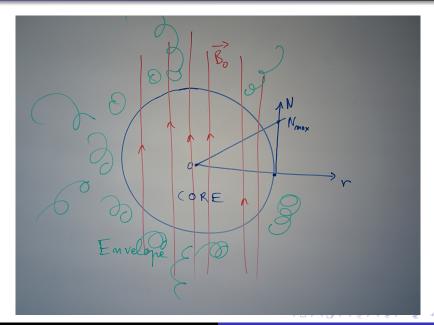
$$\mathcal{P} \sim 10^{-7} \qquad \mathcal{P}_m \sim 1$$

Viscous and ohmic dissipation negligible

The Boussinesq model

- We assume $\rho \simeq \mathrm{Cst}$ not very realistic, but necessary for a first step in a tough problem.
- We impose a uniform $\vec{B} = B_0 \vec{e}_z$ magnetic field
- We insert heat absorbers to stably stratify the core

Sketch of the configuration



Equations of motion

Perturbations $\vec{v}, \vec{b}, \delta p, \dots$ obey

$$\begin{cases} \partial_{t}\vec{v} = -\vec{\nabla}\delta p/\rho + (\delta\rho/\rho)\vec{g} + \nu\Delta\vec{v} + (\vec{\nabla}\times\vec{b}) \wedge \vec{B}_{0}/\rho\mu_{0} \\ \vec{\nabla}\cdot\vec{v} = 0 \\ \vec{\nabla}\cdot\vec{b} = 0 \\ \partial_{t}\vec{b} = \vec{\nabla}\times(\vec{v}\wedge\vec{B}_{0}) + \eta\Delta\vec{b} \\ \partial_{t}\delta T + \vec{v}\cdot\vec{\nabla}T_{0} = \kappa\Delta\delta T \end{cases}$$
(1)

Dimensionless form

The equations of perturbations read:

$$\vec{\nabla} \cdot \vec{u} = \vec{\nabla} \cdot \vec{b} = 0$$

$$\partial_{\tau}\vec{b} = \vec{\nabla} \times (\vec{u} \wedge \vec{e}_z) + E_{\eta} \Delta \vec{b}$$

$$\partial_{\tau}\theta + ru_r = E_t \Delta \theta$$

$$\partial_{\tau} \vec{u} = -\vec{\nabla} p + \theta \vec{r} + E_{\nu} \Delta \vec{u} + \mathcal{A} (\vec{\nabla} \times \vec{b}) \times \vec{e}_{z}$$

where we set

$$\mathcal{A} = \left(\frac{V_a}{NR}\right)^2, \qquad E_v = \frac{v}{NR^2}, \quad E_t = \frac{\kappa}{NR^2}, \quad E_\eta = \frac{\eta}{NR^2}$$

Parameters range

Diffusion:

$$E_{\nu} \sim 10^{-18}$$
, $E_{n} \sim 10^{-18}$, $E_{t} \sim 10^{-11}$

Numerically, we choose

$$E_{\nu} \sim 10^{-10}$$
, $E_{\eta} \sim 10^{-10}$, $E_{t} \sim 10^{-7}$

Brunt-Väisälä frequency : the maximum value is around $10^4 \mu \text{Hz}$ if $B_0 = 2 \times 10^5 \text{G}$ then $\mathcal{A} = 10^{-8}$. if $B_0 = 2 \times 10^7 \text{G}$ then $\mathcal{A} = 10^{-4}$.

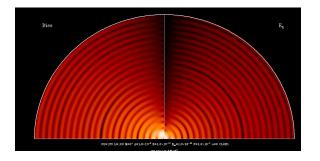
Evolution of gravity modes

When perturbed by \vec{B}_0



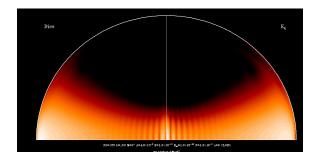
Evolution of gravity modes

When perturbed by $ec{B}_0$



Evolution of gravity modes

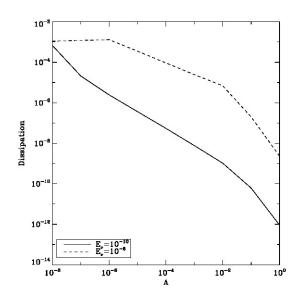
When perturbed by \vec{B}_0



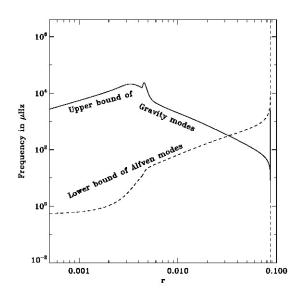
What happens if we force gravito-magnetic modes at 100μ Hz?

We impose that the excited acoustic modes shake the core-envelope interface at their frequency. Some energy is dissipated in the core. How does it vary with the intensity of the magnetic field?

Answer from the Boussinesq model



propagation diagram



Conclusions

- Alfvén modes are high frequency modes, Gravity modes are low frequency modes
- When they meet/interact their wavelength is the largest possible, thus magneto-gravity modes may not be very good at dissipating energy.
- The Boussinesq model shows that indeed damping is reduced and frequency shifted...
- The field might not be at the largest scale (the radius) but at the scales left by ohmic diffusion. In 700Myrs, all scales below 0.035R_c are erased. However, in dynamo generated field large scales are dominant ...
- The mechanism which weakens the $\ell=1$ -modes of the giants need further investigations : \vec{B} -fields may have a more subtle effect than just being absorbers.
- A real difficulty: damping the modes without touching their frequency...

Conclusions

- Alfvén modes are high frequency modes, Gravity modes are low frequency modes
- When they meet/interact their wavelength is the largest possible, thus magneto-gravity modes may not be very good at dissipating energy.
- The Boussinesq model shows that indeed damping is reduced and frequency shifted...
- The field might not be at the largest scale (the radius) but at the scales left by ohmic diffusion. In 700Myrs, all scales below 0.035R_c are erased. However, in dynamo generated field large scales are dominant ...
- The mechanism which weakens the $\ell=1$ -modes of the giants need further investigations : \vec{B} -fields may have a more subtle effect than just being absorbers.
- A real difficulty: damping the modes without touching their frequency...

Conclusions

- Alfvén modes are high frequency modes, Gravity modes are low frequency modes
- When they meet/interact their wavelength is the largest possible, thus magneto-gravity modes may not be very good at dissipating energy.
- The Boussinesq model shows that indeed damping is reduced and frequency shifted...
- The field might not be at the largest scale (the radius) but at the scales left by ohmic diffusion. In 700Myrs, all scales below 0.035R_c are erased. However, in dynamo generated field large scales are dominant ...
- The mechanism which weakens the $\ell=1$ -modes of the giants need further investigations : \vec{B} -fields may have a more subtle effect than just being absorbers.
- A real difficulty: damping the modes without touching their frequency...

Thus, magnetic fields may do the job, may be not communque

Se non è vero, è ben trovato!