Colloquium Talk September 2016

Simulation of a Double/Triple-Fabry-Pérot-Spectropolarimeter for the new solar telescope DKIST Matthias Johannes Schubert

The new 4m solar telescope DKIST on Hawaii

Demanded measurement accuracy

The imaging spectropolarimeter:

Visible Tunable Filter VTF

Simulation procedure to model observations with a double/triple *Fabry-Pérot-Interferometer*

Results for simulated observations

Consequences for the instrument configuration

The new 4m telescope DKIST on Haleakala/Hawaii

Leader ship: National Solar Observatory (US)

$D_{\text{aniel}}K.I_{\text{nouye}}S_{\text{olar}}T_{\text{elescope}}:$

Diameter D=4m

Photon flux:

~ N_{ph} = 1200 photons/ms for each resolution element in the detector plane (spectral bandwidth ∞_{μ} = 6pm)

Spatial resolution:

≤=µ/D⊤=0.032``@630.25nm

 ~ 20km for each resolution element in detector plane

Kiepenheuer-Institut für Sonnenphysik:

Development of an imaging Spectropolarimeter Development of an imaging Spectropolarimeter Study of solar absorption/emission lines and corresponding magnetic field vectors

http://www.kis.uni-freiburg.de/de/projekte/visible-tunablefilter/

Required accuracy for physical measurements

'Visible **T**unable **F**ilter' (VTF)

Configuration of the imaging Spectropolarimeter

- Pre Filter PF FWHM x1=0.8nm
- Polarization modulator **M** \square (**I**_{0,11,12,13}) T=MS with Stokes vector **S**=(I,Q,U,V)T
- Multiple Fabry-Pérot-Interferometers FPI

FPI principle: two partly reflecting

coated glass plates with adjustable

air gap -> multi beam interference

____ Double/Triple system was simulated:

Spectral Resolution SR=100.000/200.000 (at a central wavelength μ =500nm)

- ___ Diameter of active area is 0.25m □ Field Of View FOV=60"
- Telecentric mounting
- ___ F#=200

 $P_{2} = 0.520 - 870 \text{ pm}$

Telecentric mounting in defocused position

Telecentric mounting of the FPIs in a 4f system

Double-FPI-system

Induced measurement errors
variation in the line profile

- Gap variation shifts line profile
 - Reflectivity error broadens the profile

Individual shifts of the transmission profiles for FPI1 und FPI2 reduce the photon flux

Asymmetry due to radial weighting within the integration over the angle spectra

 $I_{x,y}(t) = \sum_{\lambda} I_{x,y,0}(\lambda) \prod_{i} \sum_{\theta} T^{i}_{x,y}(\lambda, \theta, R^{i}_{x,y}, \Delta R^{i}_{x,y}(\theta), g^{i}_{x,y}(t), \Delta g^{i}_{x,y}(\theta))$

Combining multiple FPIs

FPI-Parameter for two instrument configurations

	Ins	trument 1		Ins		
FPI	g in mm	R in %	Finesse Fi	g in mm	R in %	Finesse Fi
1	1.2	94	51	0.55	95	61
2	0.222	88	25	0.214	84	18
3	0.352	88	25	0.149	84	18

Spectroscopic line scan

Illustrated for one point in the detector plane

2D simulation procedure

Area size on the solar surface: 5000km x 5000km MHD simulations and line synthesis: J. M. Borrero, B. W. Lites, A. Lagg, R. Rezaei, and M. Rempel. Comparison of inversion codes for polarized line formation in MHD simulations. I. Milne-Eddington codes. Astronomy and Astrophysics, 572:A54, December 2014

2D simulation procedure

2D Simulations procedure with MESA Multi Etalon Simulation Algorithm

2D-Simulations — micro roughness Microroughness: measured with a HeNe laser at VTT/TESOS (testbench) with

similar setup

Errors in Doppler velocity, full width half maximum and loss of photon flux for the instruments

FPIs mounted near the focal plane

Ideal map

High resolution mode Instrument 1 (Triple) % = 3.8pm

Fast scan mode Instrument 2 (Double) & = 6pm

Questions:

What are the error contributions for a multi-FPI-system with realistic plate error distributions?

Does a defocused mounting of the FPIs in the optical path reduces the errors?

Is it possible to calibrate the induced errors?

Illustration of the effect of a defocused mounting

Slices through the middle for a simulated FOV of 5" are shown for Instrument 2

spectral resolution 100.000@500nm -

Near focal

Defocused mounting

Results for micro roughness

Shown are the rms values for the simulated field of view

Transmission losses for plate figure errors

For one resolution element, the error stays constant $\rightarrow \Delta g(\theta)|_{x,y} = \Delta g|_{x,y}$ and $\Delta R(\theta)|_{x,y} = \Delta R|_{x,y}$

Shown are the total instrument transmissions T for a slice through the middle of a simulated FOV=60"

Results for simulated plate gap errors

	FPI mounting	∆v _{D,rms /} ^{nm}	→ ∆v _{D /} nm	ΔW _{rms / nm}	אלעע / nm
Instrument 1	focus	335 m/s	36 m/s	1.0 %	1.6 %
	defocus	235 m/s	54 m/s	FPI nounting Δν ₁ ,, Γ m σ ₂ ,, Γ m δ ₂ ,, Γ m Instrument 1 focus 335 m/s 36 m/s 1.0 % 1.6 % defocus 235 m/s 34 m/s 0.2% Δρ + 0.3% Δρ ± 0.3% 1.6 % Instrument 6 focus 25 m/s 54 m/s 0.2% Δρ + 0.3% Δρ ± 0.3% 2.0 % Instrument 6 focus 6 85 m/s 50 m/s 0.8 % Δρ + 1.2% Δρ ± 0.0% 2.0 % defocus, figure 564 m/s 43 m/s 1.8% Δρ + 1.2% Δρ ± 0.9% 1.9 %	1.0%
Instrument 2	focus	685 m/s	50 m/s	0.8 %	2.0 %
	defocus	457 m/s	14 m/s	FPI mounting Δv _{0,m} / nm σ _{dub} / nm ΔV _{dum} / nm σ _{dub} / nm Instrument 1 focus 35 m/s 36 m/s 1.0 % 1.6 % defocus 25 m/s 54 m/s 0.2 % Δp + 0.8% - Δp / 1.0 % 1.6 % Instrument 2 focus 665 m/s 50 m/s 0.8 % 2.0 % defocus 655 m/s 50 m/s 0.8 % - Δp + 1.2% + Δp / 1.0 % 1.0 % defocus, figure 564 m/s 43 m/s 0.3 % - Δp + 1.2% + Δp / 1.0 % 1.9 %	1.0%
	defocus, figure	564 m/s	43 m/s	0.3 %	1.9 %

Magnetic sensitivity – 1D Simulation

- Photon moise $n = \sqrt{N_{ph}}$
 - transmission offitierinstrument telescoperchard and the optical parts (telescope, could data blad and and anglagizing beamsplitter (1-0.1)7)
 - efficiency of the detectore = 0.5656
 - exposure timett=22mbms

□ Instrument 2: SNR=710

- Inversion code **SIR** for line synthesis and inversion
- B. Ruiz Cobo and J. C. del Toro Iniesta. Inversion of Stokes profiles. The Inversion code SIR for line synthesis and inversion Astrophysical Journal, 398:375–385, October 1992. doi: 10.1086/171862

B. Ruiz Cobo and J. C. del Toro Iniesta. Inversion of Stokes profiles. The Astrophysical Journal, 398:375–385, October **atmosphere model: HSRA** 1992. doi: 10.1086/171862

- Fe I 630.25nm: line synthesis for different magnetic field atmosphere model: HSRA strengths and inclinations
 - Fe I 630.25nm: line synthesis for different magnetic field strengths and inclinations

Simulations for a horizontal magnetic field vector Full Stokes vector I, Q, U and V is shown

Data calibration

Enhancement of the standard procedure – shown for instrument 2 in Tandem configuration in a defocused mounting of the FPI on the optical axis

Standard method for 2d image calibration

Problem for solar spectroscopic observations: calibrating the data will introduce additional errors in terms of shifting the line profile and broadening the FWHM in an uncontrolled way

Flatfield methods

Three flatfield approaches and their differences

$$Gain_{0}(x, y, \lambda) = \frac{[Flat(x, y, \lambda) - Dark(x, y)]}{\langle [Flat(x, y, \lambda) - Dark(x, y)] \rangle}$$

$$Calculate the gain table$$

$$Gain_{1}(x, y, \lambda) = \frac{[Flat(x, y, \lambda) - Dark(x, y)]}{\langle [Flat(x, y, \lambda) - Dark(x, y)] \rangle | \pm \Delta \lambda(x, y)},$$

$$Gain_{2}(x, y, \lambda) = \frac{[Flat(x, y, \lambda) - Dark(x, y)]}{\langle [Flat(x, y, \lambda \pm \Delta \lambda(x, y)) - Dark(x, y)] \rangle}$$

$$Determined 2D map of introduced shifts in line core position leo$$

$$Correct the data$$

$$\Delta \lambda_{D}(x, y) = \Delta \lambda'_{D}(x, y) \pm \Delta \lambda(x, y)$$

$$v_{D}(x, y) = \frac{\Delta \lambda_{D}(x, y)}{\lambda_{0}} \cdot c$$

Differences in calibration methods

The calibration methods are illustrated for a full Stokes vector I, Q, U and V with a plate gap error Δg_{rms} =3nm

Data calibration and the benefit on physical measurements - Calibration method 2 -

Micro roughness

Plate figure errors

Consequences for the VTF

Instrument 1 or Instrument 2

We will realize instrument 2 in tandem configuration for the

VTF:	Error distribution	Surface error Δr (rms)
Dofined Minor Lasses in the photo		Reflectivity error ΔR (rms)
individual transmission pro	Micro roughness	$\Delta r \leq 0.5 nm$
achieve the demanded		$\Delta R \le 2\%$
measure The higher indexed velocit	Plate figure errors	∆r ≤ 5nm
 Demanded magnetic sensi 	, , ,	$\Delta R \leq 2\%$

- velocity measurements and the FWHM is fulfilled
- Shorter cadence for line acquisition due to lower spectral resolution

Thank you for your kind attention!

Questions?