

Data Calibration I

Imaging Instruments

Christoph Kuckein

Learning goals for today

- 1. Familiarize with ground-based imaging data
- 2. Get to know the basic data reduction concepts
- 3. Run the basic data reduction pipeline for two GREGOR imaging instruments
- 4. Obtain the wavelength array
- 5. ... and learn some IDL tips

Telescope	Instruments
GREGOR	
SST	
DST	
DKIST	

2019 August 06

Telescope	Instruments
GREGOR	BIC (2014-2016) HiFI (2016 -) GFPI
SST	CRISP CHROMIS
DST	IBIS ROSA
DKIST	VTF VBI

2019 August 06

Telescope	Imaging	Spectroscopic Imaging
GREGOR	BIC (2014-2016) HiFI (2016 -)	GFPI
SST	-	CRISP CHROMIS
DST	ROSA	IBIS
DKIST	VBI	VTF

Basic Data Reduction

Imaging data

- Dark correction
 - Detectors accumulate counts even if no light is falling on the detector (because the detector is not at a temperature of 0 K)

Flat-field correction

 Each pixel of a detector (CCD, SCMOS,...) has a certain gain, which might be different from the neighbor pixel (also owing to dust along the light). The flat-field image shows the response of the detector to a uniform light source.

Flat-field correction

Find the differences?

Without flat-field correction

GREGOR Fabry-Pérot Interferometer (GFPI; May 2018)

Flat-field corrected

2019 August 06

Flat-field correction

Without flat-field correction

GREGOR Fabry-Pérot Interferometer (GFPI; May 2018)

Flat-field corrected

2019 August 06

Basic Data Reduction

Imaging data

- Dark correction
 - Detectors accumulate counts even if no light is falling on the detector (because the detector is not at a temperature of 0 K)

□ Spectroscopic Imaging data

- Dark correction
- Flat-field correction
- Prefilter curve correction
- Instrument specific corrections*

Flat-field correction

- Each pixel of a detector (CCD, SCMOS,...) has a certain gain, which might be different from the neighbor pixel (also owing to dust along the light). The flat-field image shows the response of the detector to a uniform light source.
- Spectropolarimetric Imaging data
 - Dark correction
 - Flat-field correction
 - Prefilter curve correction
 - Instrument specific corrections*
 - Polarimetric calibration to obtain
 Stokes profiles

*next slide...

Types of Fabry-Pérot Interferometers

Different steps for data reduction

*Telecentric setup: etalons are located close to the focal plane

2019 August 06

Data Calibration I: Imaging Instruments --- Christoph Kuckein

https://ui.adsabs.harvard.edu/abs/2017IAUS..327...20K/abstract

A few words to sTools

- Under constant development at the Solar Group at Leibniz-Institute for Astrophysics Potsdam (AIP)
- □ Is more than a data reduction pipeline for HiFI and GFPI
- □ Has many IDL programs and tools to analyze your data
- □ Is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
 - You are free to use and build your own programs upon sTools, but please acknowledge the creators (AIP)
- A very brief description can be read at the proceeding: Kuckein, C., Denker, C., Verma, M., et al. 2017, Fine Structure and Dynamics of the Solar Atmosphere, IAU Symposium 327, page 20

https://ui.adsabs.harvard.edu/abs/2017IAUS..327...20K/abstract

- You have the latest version. Usually updates are uploaded at gregor.aip.de (members section; free registration required)
- □ Use it!

Imaging Instruments at GREGOR

Access to the archive

- Access is currently granted via ssh after registration
 - <u>Register</u> at https://gregor.aip.de
 - AIP approves registration → account is created on the website and home directory is setup on the data archive
 - ssh -p 2222 username@minos.aip.de

- Archive structure
 - Data is located at /store/gregor/...
 - Substructure: HiFl
 - Level0.0 (raw data; only exceptionally stored)
 - Level1.0 (reduced and frame selected)
 - Level2.0 (speckle restored data)

- Substructure: GFPI
 - Level0.0 (raw data)
 - Level1.0 (reduced data)
 - Level2.0 (MOMFBD restored)

Data Reduction Imaging

Data Reduction Imaging

 We will use as an example the current High-resolution Fast Imager (HiFI) instrument at GREGOR

Data Reduction Imaging

 We will use as an example the current High-resolution Fast Imager (HiFI) instrument at GREGOR

- Characteristics
 - 2 synchronized sCMOS cameras
 - Images written into the same file
 - 2560 x 2160 pixels
 - 370 500 nm (together with GFPI)
 - Frame rate at full res: 50Hz
 - With smaller FOV: 100 135 Hz

Checklists...

- Checklist include recommendations from AIP after working with the cameras for 3 years
- Every day create a new project directory inside DAVIS
- If you decide to change the filters please use a new project
- Pay attention to the suffix. They are crucial for the data reduction pipeline <u>sTools</u>
- Every project should have the following files:
 - Flats (suffix: _ff)
 - Darks (_dk)
 - ___df, _tg, _ph ,_pl, pg

Checklist HiFI at GREGOR

Recommended settings for science data (Suffix: _sd):

- Full FOV:.....# images: 500, Rate: 47 Hz
- FOV 1280 X 1024: (x= 640,1919; y= 568,1591)......# images: 500, Rate: 100 Hz (x= 640,1919; y= 566,1593)......# images: 500, Rate: 100 Hz
- HD FOV 1920 X 1080: (x= 302, 2239; y= 539, 1620)......# images: 500, Rate: 98 Hz Note: Always use same exposure times in both cameras!

Calibration data:

1. flat field (Suffix: _ff)

(disk center; watch out for solar structures such as pores, sunspots, etc.) Telescope moving speed as high as possible (100"). Big radius 100". # Images: 2000 Rate: 10 Hz

Move up M2 to defocus telescope (arrow up 1.2 mm). 2. flat field defocused (Suffix: _df) # Images: 500 Rate: 10 Hz

3. target defocused (Suffix: _tg) # Images: 100 Rate: 49 Hz

4. pinholes defocused (small (_ph) and large (_pl))
Images: 100
Rate: 49 Hz
Move back M2 to original value (arrow down 1.2 mm).

5. dark (Suffix: _dk)

Checklists...

- Checklist include recommendations • from AIP after working with the cameras for 3 years
- Every day create a new project directory inside DAVIS
- If you decide to change the filters • please use a new project
- Pay attention to the suffix. They are • crucial for the data reduction pipeline sTools
- Every project should have the following files:
 - Flats (suffix: _ff)
 - Darks (_dk)
 - _df, _tg, _ph ,_pl, pg

Checklist HiFI at GREGOR

Recommended settings for science data (Suffix: sd):

- Full FOV:.....# images: 500, Rate: 47 Hz
- FOV 1280 X 1024; (x= 640,1919; y= 568,1591)......# images: 500, Rate: 100 Hz (x= 640,1919; y= 566,1593)......# images: 500, Rate: 100 Hz
- HD FOV 1920 X 1080: (x= 302, 2239; y= 539, 1620)......# images: 500, Rate: 98 Hz Note: Always use same exposure times in both cameras!

Calibration data:

1. flat field (Suffix: ff)

(disk center; watch out for solar structures such as pores, sunspots, etc.) Telescope moving speed as high as possible (100"). Big radius 100". # Images: 2000 tionDate Rate: 10 Hz

Move up M2 to defocus telescope (arrow up 1.2 mm). 2. flat field defocused (Suffix: df) # Images: 500 Rate: 10 Hz

3. target defocused (Suffix: _tg) # Images: 100 Rate: 49 Hz

4. pinholes defocused (small (ph) and large (pl)) # Images: 100 Rate: 49 Hz Move back M2 to original value (arrow down 1.2 mm).

5. dark (Suffix: _dk)

□ The basic setup

(https://cloud.aip.de/index.php/s/dtLdEyyc5yaE8q4)

- A few SolarSoft routines are needed
- HiFI and GFPI write images in a special file type: .im7
 - A special program is needed for GFPI data to read them: ReadIMX. This program needs to be compiled first on your computer
- sTools → the configuration files: *stools_cfg_?????.pro*
 - *stools_cfg_setup.pro* (path to ReadIMX needs to be set)
 - stools_cfg_observer.pro (Observer name can be set)
 - *stools_cfg_filter.pro* (list of available filters for HiFI)

□ sTools

OPEN: stools_hifi_stand_alone_nodisplay.pro

```
!OUIET = 0
sSetup = stools cfg setup()
sSetup.date = 'YYYYMMDD' ; <--- input date
sSetup.dir = '/instruments/hifi/Prj_Type=Imaging_Date=.../' ; <- input project</pre>
sSetup.out = '/dat/USERNAME/hifi/level1/'+sSetup.date+'/' ; <- create directo</pre>
sSetup.verbose = 0 ; to not display images
sTelescope = stools cfg telescope('GREGOR')
; Look up observername in stools cfg observer.pro
sObserver = stools cfg observer('CHRISTOPH') ; <-- change observer
; Look up filter names in stools cfg filter.pro
sFilter1 = stools_cfg_filter('3968B') ; <-- change filter tag 1
sFilter2 = stools cfg filter('4506') ; <-- change filter tag 1
: Notes:
; - If no pinhole grid images were taken (extension 'pg'), then please comment
    below the "align pinhole grid frames" routine
```

□ sTools

```
Where is the
OPEN: stools_hifi_stand_alone_nodisplay.pro
                                                                   data and where
    !OUIET = 0
                                                                     you want to
    sSetup = stools cfg setup()
                                                                         store it
    sSetup.date = 'YYYYMMDD' ; <--- input date
    sSetup.dir = '/instruments/hifi/Prj Type=Imaging Date=.../' ; <- input project</pre>
   sSetup.out = '/dat/USERNAME/hifi/level1/'+sSetup.date+'/' ; <- create directo</pre>
    sSetup.verbose = 0 ; to not display images
                                                                Add your name
    sTelescope = stools cfg telescope('GREGOR')
                                                    In stools_cfg_observer.pro
    ; Look up observername in stools_cfg_observer_pro___
    sObserver = stools cfg observer('CHRISTOPH'; <-- change observer
    ; Look up filter names in stools cfg filter.pro
    sFilter1 = stools_cfg_filter('3968B') ; <-- change filter tag 1
                                                                     Select filter
    sFilter2 = stools cfg filter('4506') ; <-- change filter tag 1
    : Notes:
     - If no pinhole grid images were taken (extension 'pg'), then please comment
       below the "align pinhole grid frames" routine
```

□ sTools

OPEN: stools_hifi_stand_alone_nodisplay.pro

```
: dark frames -
stools hifi dark frames, sSetup, sTelescope, sObserver, $
                        sFilter1, sFilter2
timing[1] = systime(1)
print.
print, 'Dark frames [s]:
                                          ', string(FORMAT='(F8.2)', $
   (timing[1] - timing[0]))
: flat-field frames -----
stools hifi flat field frames, sSetup, sTelescope, sObserver, $
                              sFilter1, sFilter2
timing[2] = systime(1)
print, 'Flat-field frames frames [s]: ', string(FORMAT='(F8.2)'. $
   (timing[2] - timing[1]))
: Defocused flat-field frames -----
                                                                            exclude
stools_hifi_defocused_flat_field_frames, sSetup, sTelescope, sObserver, $
                                  sFilter1, sFilter2
```

stools_hifi_stand_alone_nodisplay.pro

```
; pinhole frames -
stools hifi pinhole frames, sSetup, sTelescope, sObserver, $
                          sFilter1, sFilter2
timing[4] = systime(1)
print, 'Pinhole frames frames [s]: ', string(FORMAT='(F8.2)', $
   (timing[4] - timing[3]))
; target frames ------
stools_hifi_target_frames, sSetup, sTelescope, sObserver, $
                         sFilter1, sFilter2
timing[5] = systime(1)
print, 'Target frames frames [s]: ', string(FORMAT='(F8.2)'. $
   (timing[5] - timing[4]))
; align target frames -----
stools hifi target frames align, sSetup
timing[6] = systime(1)
print, 'Align target frames [s]: ', string(FORMAT='(F8.2)', $
   (timing[6] - timing[5]))
; align pinhole grid frames ------
stools_hifi_pinhole_grid_frames_align, sSetup
timing[7] = systime(1)
print, 'Align pinhole grid frames [s]: ', string(FORMAT='(F8.2)', $
   (timing[7] - timing[6]))
```

stools_hifi_stand_alone_nodisplay.pro

stools_hifi_stand_alone_nodisplay.pro

- □ Try to run now the HiFI pipeline:
 - Data from 2018 May 07
 - Set correct path for in and output data and filters
 - Needed libraries:
 - sTools
 - SolarSoft ssw/gen
 - Oslolib (for align.pro)
 - If everything is ready then open IDL and type:
 - .r stools_hifi_stand_alone_nodisplay

□ sTools

```
Where is the
stools_hifi_stand_alone_nodisplay.pro
                                                                   data and where
    !OUIET = 0
                                                                      you want to
    sSetup = stools cfg setup()
                                                                         store it
    sSetup.date = 'YYYYMMDD' ; <--- input date
    sSetup.dir = '/instruments/hifi/Prj Type=Imaging Date=.../' ; <- input project</pre>
    sSetup.out = '/dat/USERNAME/hifi/level1/'+sSetup.date+'/' ; <- create directo</pre>
    sSetup.verbose = 0 ; to not display images
                                                                Add your name
    sTelescope = stools cfg telescope('GREGOR')
                                                     In stools_cfg_observer.pro
    ; Look up observername in stools_cfg_observer_pro___
    sObserver = stools cfg observer('CHRISTOPH'; <-- change observer
    ; Look up filter names in stools cfg filter.pro
    sFilter1 = stools_cfg_filter('3968B') ; <-- change filter tag 1
                                                                      Select filter
    sFilter2 = stools cfg filter('4506') ; <-- change filter tag 1
    : Notes:
     - If no pinhole grid images were taken (extension 'pg'), then please comment
       below the "align pinhole grid frames" routine
```

2018 calibration20180507.sav -rw-rw---- 1 ckuckein gre 43M Jun 25 -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 082542 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 082542 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 082706 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 082706 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 082846 sd.fts 2018 hifi 20180507 082846_sd.sav -rw-rw---- 1 ckuckein gre 5.9K Jun 25 -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 082908 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 082908 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 082931 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 082931 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 082953 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 082953 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 083016 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 083016 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 083038 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 083038 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 083101 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi_20180507_083101_sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 083123 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 083123 sd.sav 2018 hifi 20180507 083145 sd.fts -rw-rw---- 1 ckuckein gre 2.1G Jun 25 -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 083145 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 083208 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 083208 sd.sav -rw-rw---- 1 ckuckein gre 2.1G Jun 25 2018 hifi 20180507 083231 sd.fts -rw-rw---- 1 ckuckein gre 5.9K Jun 25 2018 hifi 20180507 083231 sd.sav

Alignment information of both cameras (IDL structure)

Fits files: 200 images 0,2,4,6, ... n \rightarrow filter 1 1,3,5,7, ... n+1 \rightarrow filter 2

Save files:

 mfgs_stat
 (IDL structure with statistics of the quality of the image according to MFGS)

IDL> restore, 'calibration20180507.sav',/v % RESTORE: Portable (XDR) SAVE/RESTORE file. % RESTORE: Save file written by ckuckein@perot, Mon Jun 25 11:12:33 2018. % RESTORE: IDL version 8.1 (linux, x86 64). % RESTORE: Restored variable: TARGET1. % RESTORE: Restored variable: TARGET2. % RESTORE: Restored variable: STARGET. IDL> help, starget ** Structure <18b9848>, 6 tags, length=48, data length=42, refs=1: DIRECTION INT Array[2] DXY FLOAT MAG FLOAT 1.00570 COR DOUBLE 0.97710854 PXY Array[2] DOUBLE THETA FLOAT 0.477696 IDL> print, starget.pxy 1304.1194 1107.2721 IDL> print, starget.dxy 11.0690 6.47623

Alignment information of both cameras (IDL structure)

Fits files: 200 images 0,2,4,6, ... n \rightarrow filter 1 1,3,5,7, ... n+1 \rightarrow filter 2

To align image of camera 1 to camera 2:

img1new = rot(img1, theta, mag, pxy[0], pxy[1], CUBIC=-0.5, /PIVOT)

Tip: You can check the alignment blinking both images blink, [0,1], 0.5

□ Fits file

- Images are not sorted by time, they are sorted by image quality
- Image quality / seeing is computed using the MFGS value
 - Median Filter-Gradient Similarity
 - https://link.springer.com/article/10.1007%2Fs11207-015-0676-1
 - The higher the mean MFGS value, the better the seeing quality

Fits files: 200 images 0,2,4,6, ... n \rightarrow filter 1 1,3,5,7, ... n+1 \rightarrow filter 2

Save files:

 mfgs_stat
 (IDL structure with statistics of the quality of the image according to MFGS)

MFGS

stools_median_filter_gradient_similarity.pro

2019 August 06

□ Fits file

- Images are not sorted by time, they are sorted by image quality
- Image quality / seeing is computed using the MFGS value
 - Median Filter-Gradient Similarity
 - https://link.springer.com/article/10.1007%2Fs11207-015-0676-1
 - The higher the mean MFGS value, the better the seeing quality

To read the fits files with IDL: img = readfits('filename.fts', ext=n, header) Alignment information of both cameras (IDL structure)

Fits files: 200 images 0,2,4,6, ... n \rightarrow filter 1 1,3,5,7, ... n+1 \rightarrow filter 2

Save files:

 mfgs_stat
 (IDL structure with statistics of the quality of the image according to MFGS)

□ Fits file

- Images are not sorted by time, they are sorted by image quality
- Image quality / seeing is computed using the MFGS value
 - Median Filter-Gradient Similarity
 - https://link.springer.com/article/10.1007%2Fs11207-015-0676-1
 - The higher the mean MFGS value, the better the seeing quality

Alignment information of both cameras (IDL structure)

Fits files: 200 images 0,2,4,6, ... n \rightarrow filter 1 1,3,5,7, ... n+1 \rightarrow filter 2

Save files:

- mfgs_stat (IDL structure with statistics of the quality of the image according to MFGS)

□ To read the fits files with IDL; img = readfits('filename.fts', ext=n, neader)

use a "for" loop to read the 100 images of each filter (200 images in total)

□ To read the fits files with IDL:

img = readfits('filename.fts', ext=0, header)

SIMPLE =	т /	MFGSMEAN=	0.93865	/ MFGS mean (based on 4x4 binned i
BITPIX =	16 /	MFGSSDEV=	0.12152	/ MFGS standard deviation
AXIS =	2 /	MFGS10 =	0.82174	/ MFGS 10th percentile
AXIS1 =	2560 /	MFGS50 =	0.98692	/ MFGS 50th percentile
AXIS2 =	2160 /	MFGS90 =	0.99974	/ MFGS 90th percentile
BZERO =	0.00000 /	MFGSVAR =	0.01477	/ MFGS variance
BSCALE =	1.00000 /	MFGSMDEV=	0.07369	/ MFGS absolute mean deviation
EXTEND =	т /	MFGSSKEW=	-3.43847	/ MFGS skewness
DATE =	'2018-06-27T17:23:14' / File creation date [UTC]	MFGSKURT=	13.82297	/ MFGS kurtosis
DATE-OBS=	'2018-05-07T09:58:56' / Data acquisition date [UTC]	DATAMIN =	0.52979	/ Data minimum
INSTRUME=	'HiFI ' / High-resolution Fast Imager	DATAMEAN=	0.98757	/ Data mean
AVELNTH=	396.800 / Observed wavelength [nm]	DATAMEDN=	0.98150	/ Data median
FELESCOP=	'GREGOR Solar Telescope' / Name of telescope	DATA10 =	1.06343	/ Data 10th percentile
BS-SITE=	'Observatorio del Teide' / Name of observatory	DATAMAX =	1.21863	/ Data maximum
BSERVER=	'Christoph Kuckein' / Observer name	DATAVAR =	0.00361	/ Data variance
DBJECT =	'Sun /	DATASDEV=	0.06012	/ Data standard deviation
BUFFNAME=	'B00086.im7' / Original image file name	DATAMDEV=	0.04506	/ Data absolute mean deviation
IMEOFFS=	3000.06 / Time offset after first image [ms]	DATASKEW=	-0.69839	/ Data skewness
EXPTIME =	6.00000 / Exposure time [ms]	DATAKURT=	5.32838	/ Data kurtosis
IFRAMES =	100 / Number of saved frames	COMMENT		
IMGORIG=	500 / Number of initially acquired images	COMMENT	contact information:	
ICAMERAS=	2 / Camera 1 (even), Camera 2 (odd)	COMMENT	Constan Deskan Kadaska	-0
CAMERAID=	1 / Camera ID	COMMENT	Larsten Denker (Coenke	realp.de) Astrophysics Dotsdom (ATD)
AMECAM =	'Imager sCMOS' / Name of cameras	COMMENT	An des Stesnusste 16	ASCIOPHYSICS FOLSOM (AIF)
PIXSIZE =	6.50000 / Size of camera pixel [microns]	COMMENT	14482 Potedom CEDMANV	
AVISVER=	'DaVis ver. 8.3.0' / DaVis software version	O BSCALE-	1 05108765638F-05	/ Ocidinal BSCALE Value
		0 BZERO -	0 874206572771	/ Original BZERO Value
		FND	0.014200572111	

□ To read the fits files with IDL:

img = readfits('filename.fts', ext=0, header)

SIMPLE =	т /	MFGSMEAN= 0.93865 / MFGS mean (based on 4x4 binned i
BITPIX =	16 /	MFGSSDEV= 0.12152 / MFGS standard deviation
AXIS =	2 /	MFGS10 = 0.82174 / MFGS 10th percentile
AXIS1 =	2560 /	MFGS50 = 0.98692 / MFGS 50th percentile
AXIS2 =	2160 /	MFGS90 = 0.99974 / MFGS 90th percentile
BZERO =	0.00000 /	MFGSVAR = 0.01477 / MFGS variance
BSCALE =	1.00000 /	MFGSMDEV= 0.07369 / MFGS absolute mean deviation
EXTEND =	Τ,	MFGSSKEW= -3.43847 / MFGS skewness
DATE =	'2018-06-27T17:23:14' / File creation date [UTC]	MFGSKURT= 13.82297 / MFGS kurtosis
DATE-OBS=	'2018-05-07T09:58:56' / Data acquisition date [UTC]	DATAMIN = 0.52979 / Data minimum
ENSTRUME=	'HiFI ' / High-resolution Fast Imager	DATAMEAN= 0.98757 / Data mean
AVELNTH=	396.800 / Observed wavelength [nm]	DATAMEDN= 0.98150 / Data median
TELESCOP=	'GREGOR Solar Telescope' / Name of telescope	DATA10 = 1.06343 / Data 10th percentile
DBS-SITE=	'Observatorio del Teide' / Name of observatory	DATAMAX = 1.21863 / Data maximum
DBSERVER=	'Christoph Kuckein' / Observer name	DATAVAR = 0.00361 / Data variance
OBJECT =	'Sun ' /	DATASDEV= 0.06012 / Data standard deviation
BUFFNAME=	'B00086.im7' / Original image file name	DATAMDEV= 0.04506 / Data absolute mean deviation
TIMEOFFS=	3000.06 / Time offset after first image [m	ms] DATASKEW= -0.69839 / Data skewness
EXPTIME =	6.00000 / Exposure time [ms]	DATAKURT= 5.32838 / Data kurtosis
VERAMES =	100 / Number of saved frames	COMMENT
VIMGORIG=	500 / Number of initially acquired ima	COMMENT Contact information:
CAMERAS=	2 / Camera 1 (even), Camera 2 (odd)	COMMENT
CAMERAID=	1 / Camera ID	COMMENT Carsten Denker (cdenker@aip.de)
NAMECAM =	'Imager sCMOS' / Name of cameras	COMMENI Leibniz Institute for Astrophysics Potsdam (AIP)
PTXST7F =	6 50000 / Size of camera pixel [microns]	COMMENI An der Sternwarte 16
DAVISVER=	'DaVis ver 8 3 0' / DaVis software version	COMMENI 14482 Potsdam, GERMANY
		U_BSCALE= 1.05108/65638E-05 / Uriginal BSCALE Value
		U_BZERU = 0.8/42065/2//1 / Original BZERU Value
		END

Important keywords!

□ Next steps to get the data science ready: restoration

- Speckle restoration (e.g., KISIP example below)
 - stools_hifi_science_frames_speckle.pro (requires KISIP installation)
- MFBD restoration

Data Reduction Spectroscopic Imaging

2019 August 06

Data Calibration I: Imaging Instruments --- Christoph Kuckein

Data Reduction GFPI

We will use as an example the GFPI at GREGOR

- Characteristics (before 2019)
 - 2 synchronized CCD cameras
 - Broad-band camera (to have high S/N images)
 - Narrow-band camera to scan the line
 - 1376 x 1040 pixels
 - 530 650 nm (together with GRIS)

Data Reduction GFPI

We will use as an example the GFPI at GREGOR

- Characteristics (before 2019)
 - 2 synchronized CCD cameras
 - Broad-band camera (to have high S/N images)
 - Narrow-band camera to scan the line
 - 1376 x 1040 pixels
 - 530 650 nm (together with GRIS)

Optimized for MOMFBD restoration

Data Reduction GFPI

□ Scan along the line

□ Make sure:

- sTools is in your IDL path
- SSW is in your IDL path
- Oslolib is in your IDL path
- The external program ReadIMX is in /home/username/tools/bin
 - Open stools_cfg_setup.pro and modify line 132 to make sure that the "bin" path point toward ReadIMX
- For the prefilter curve you need an atlas profile
 - Workaround: fts_atlas_6563.sav will be handed out and needs to be manually changed in stools_gfpi_prefilter_curve.pro (line 202)

□ sTools

OPEN: stools_gfpi_stand_alone_solarnet.pro

```
sSetup = stools_cfg_setup()
```

```
; Halpha
sSetup.date = '20140812'
;sSetup.dir =
;'/store/gregor/gfpi/level0.0/Prj_Type=FPI_Date=20140812_Time=071212/'
sSetup.dir = '/store/gregor/gfpi/level0.0/tmp/summerschool/Prj Type=FPI Date=20140812 Time=071212/'
sSpectralLines = stools cfg spectral lines('6563')
sSetup.out ='/store/gregor/gfpi/level1.0/tmp/summerschool/20140812/'
sSetup.verbose = 1
sCamera = stools cfg camera('SENSICAM')
sCamera.nx = 688
sCamera.ny = 512
                                                                             Change to your
sCamera.ibx = 1 ; binning
sCamera.iby = 1
                                                                                 directories
sCamera.scale = 0.0405
```

```
sTelescope = stools_cfg_telescope('GREGOR')
```

stools_gfpi_stand_alone_solarnet.pro

```
; dark frames
stools_gfpi_dark_frames, sCamera, sSetup
timing[1] = systime(1)
print, ''
print, 'Dark frames [s]: ',
    (timing[1] - timing[0]))
```

```
', string(FORMAT='(F8.2)', $
```

```
; flat-field frames
stools_gfpi_flat_field_frames, sCamera, sSetup
timing[2] = systime(1)
print, 'Flat-field frames frames [s]: ', string(FORMAT='(F8.2)', $
    (timing[2] - timing[1]))
```

```
; pinhole frames
stools_gfpi_pinhole_frames, sCamera, sSetup
timing[3] = systime(1)
print, 'Pinhole frames frames [s]: ', string(FORMAT='(F8.2)', $
    (timing[3] - timing[2]))
```

```
; target frames
stools_gfpi_target_frames, sCamera, sSetup
timing[4] = systime(1)
print, 'Target frames frames [s]: ', string(FORMAT='(F8.2)', $
    (timing[4] - timing[3]))
```


stools_gfpi_stand_alone_solarnet.pro

□ stools_gfpi_stand_alone_solarnet.pro

total 178G

-rw-rw-r	1	ckuckein	gre	173M	Jul	24	18:10	calibration20140812.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	09:46	gfpi20140812_075543.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	09:53	gfpi20140812_075633.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:01	gfpi20140812_075722.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:08	gfpi20140812_075812.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:15	gfpi20140812_075900.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:22	gfpi20140812_075948.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:29	gfpi20140812_080036.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:37	gfpi20140812_080126.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:44	gfpi20140812_080215.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:51	gfpi20140812_080305.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:56	gfpi20140812_080355.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:01	gfpi20140812_080445.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:06	gfpi20140812_080534.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:10	gfpi20140812_080622.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:15	gfpi20140812_080710.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:20	gfpi20140812_080759.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:25	gfpi20140812_080847.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:29	gfpi20140812_080935.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:34	gfpi20140812_081023.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:39	gfpi20140812_081110.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:43	gfpi20140812_081158.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:48	gfpi20140812_081246.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:53	gfpi20140812_081335.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:58	gfpi20140812_081424.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:02	gfpi20140812_081513.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:07	gfpi20140812_081601.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:12	gfpi20140812_081649.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:16	gfpi20140812_081737.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:21	gfpi20140812_081824.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:26	gfpi20140812_081913.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:31	gfpi20140812_082000.sav

total 178G

-rw-rw-r	1	ckuckein	gre	173M	Jul	24	18:10	calibration20140812.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	09:46	gfpi20140812_075543.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	09:53	gfpi20140812_075633.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:01	gfpi20140812_075722.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:08	gfpi20140812_075812.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:15	gfpi20140812_075900.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:22	gfpi20140812_075948.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:29	gfpi20140812_080036.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:37	gfpi20140812_080126.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:44	gfpi20140812_080215.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:51	gfpi20140812_080305.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	10:56	gfpi20140812_080355.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:01	gfpi20140812_080445.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:06	gfpi20140812_080534.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:10	gfpi20140812_080622.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:15	gfpi20140812_080710.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:20	gfpi20140812_080759.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:25	gfpi20140812_080847.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:29	gfpi20140812_080935.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:34	gfpi20140812_081023.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:39	gfpi20140812_081110.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:43	gfpi20140812_081158.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:48	gfpi20140812_081246.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:53	gfpi20140812_081335.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	11:58	gfpi20140812_081424.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:02	gfpi20140812_081513.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:07	gfpi20140812_081601.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:12	gfpi20140812_081649.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:16	gfpi20140812_081737.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:21	gfpi20140812_081824.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:26	gfpi20140812_081913.sav
-rw-rw-r	1	ckuckein	gre	1.4G	Jul	25	12:31	gfpi20140812_082000.sav

calibrationYYYYMMDD.sav

BLUESHIFT	FLOAT	= Array[688, 512]
BLUESHIFTFIT	FLOAT	= Array[688, 512]
DARKBB	FLOAT	= Array[688, 512, 2]
DARKNB	FLOAT	= Array[688, 512, 2]
FLATBB	FLOAT	= Array[688, 512]
FLATNB	FLOAT	= Array[688, 512]
FLATNBMASTER	FLOAT	= Array[688, 512, 58]
FLATNBSCAN	FLOAT	= Array[688, 512, 58]
LAMBDA_GFPI	FLOAT	= Array[173]
NACC	INT	= Array[1]
NINC	INT	= Array[1]
NPOS	INT	= Array[1]
PINHBB	FLOAT	= Array[688, 512]
PINHNB	FLOAT	= Array[688, 512]
POSITIONS	INT	= Array[58]
POSITIONSLONG	INT	= Array[173]
PREFILTER	FLOAT	= Array[2753]
PREFILTER_COEF	FLOAT	= Array[6]
SPECTRUM_FTS	FLOAT	= Array[173]
SPECTRUM_GFPI	FLOAT	= Array[173]
SSPECTRALLINES	STRUCT	= -> <anonymous> Array[1]</anonymous>
STARGET	STRUCT	= -> <anonymous> Array[1]</anonymous>
SVN	STRING	= Array[5]
TARGBB	FLOAT	= Array[688, 512]
TARGNB	FLOAT	= Array[688, 512]

calibrationYYYYMMDD.sav

BLUESHIFT = Array[688, 512] FLOAT = Array[688, 512] BLUESHIFTFIT FLOAT Number of images per = Array[688, 512, 2] DARKBB FLOAT wavelength position DARKNB FLOAT = Array[688, 512, 2] = Array[688, 512] FLATBB FLOAT (accumulations) FLATNB FLOAT = Array[688, 512]FLATNBMASTER FLOAT = Array[688, 512, 58 FLATNBSCAN FL OAT = Array[688, 512 = Array[173] LAMBDA GFPI FLOAT NACC INT = Array[1]Step size (unit: positions) NINC = Array[1]INT NPOS INT = Array[1]PINHBB = Array[688, 512] FLOAT = Array[688, 512]PINHNB FLOAT Wavelength points along = Array[58] POSITIONS INT POSITIONSLONG INT = Array[173] the spectral line PREFILTER FLOAT = Array[2753] PREFILTER COEF FLOAT = Array[6]= Array[173] Coefficients to correct the SPECTRUM FTS FLOAT SPECTRUM GFPI FLOAT = Array[173] prefilter curve = -> <Anonymous> Array[1] SSPECTRALLINES STRUCT = -> <Anonymous> Array[1] STARGET STRUCT SVN STRING = Array[5]TARGBB = Array[688, 512]FLOAT TARGNB = Array[688, 512]FI OAT

Blueshift correction (to

restoration by MOMFBD

apply after image

Observations: gfpiYYYMMDD_hhmmss.sav

■ IDL \rightarrow restore, 'filename', /v

512, 464]
512, 464]
512, 58]
ous> Array[1]
ous> Array[1]

scanBB: all reduced broad-band images
 scanNB: all reduced narrow-broad images

Used for MOMFBD

Observations: gfpiYYYMMDD_hhmmss.sav

■ IDL \rightarrow restore, 'filename', /v

SCANBB	FLOAT	= Array[688, 512, 464]
SCANNB	FLOAT	= Array[688, 512, 464]
SCANNBMEAN	FLOAT	= Array[688, 512, 58]
SPHYSMAPS	STRUCT	= -> <anonymous> Array[1]</anonymous>
SSCANTABLE	STRUCT	= -> <anonymous> Array[1]</anonymous>

scanBB: all reduced broad-band images

Used for MOMFBD

scanNB: all reduced narrow-broad images

scanNBmean: scanNB but images of the same wavelength position were summed up (averaged). In other words, the accumulated images at each wavelength position are averaged to increase the S/N. In addition, blueshift and prefilter curve were corrected. This data can be used to make science (but be aware that no image restoration was done yet!)

Observations: gfpiYYYMMDD_hhmmss.sav

■ IDL \rightarrow restore, 'filename', /v

SCANBB	FLOAT	= Array[688, 512, 464]
SCANNB	FLOAT	= Array[688, 512, 464]
SCANNBMEAN	FLOAT	= Array[688, 512, 58]
SPHYSMAPS	STRUCT	= -> <anonymous> Array[1]</anonymous>
SSCANTABLE	STRUCT	= -> <anonymous> Array[1]</anonymous>

scanBB: all reduced broad-band images

Used for MOMFBD

scanNB: all reduced narrow-broad images

scanNBmean: scanNB but images of the same wavelength position were summed up (averaged). In other words, the accumulated images at each wavelength position are averaged to increase the S/N. In addition, blueshift and prefilter curve were corrected. This data can be used to make science (but be aware that no image restoration was done yet!)

Observations: gfpiYYYMMDD_hhmmss.sav

■ IDL \rightarrow restore, 'filename', /v

SCANBB	FLOAT	= Array[688, 512, 464]
SCANNB	FLOAT	= Array[688, 512, 464]
SCANNBMEAN	FLOAT	= Array[688, 512, 58]
SPHYSMAPS	STRUCT	= -> <anonymous> Array[1]</anonymous>
SSCANTABLE	STRUCT	= -> <anonymous> Array[1]</anonymous>

SPhysMaps: quicklook data such as intensity, equivalent width, LOS velocities, etc. Cannot be used for science, but gives an impression of the content and interesting features in the data

Observations: gfpiYYYMMDD_hhmmss.sav sPhysMaps (only quicklook data!)

IDL> help, SP	HYSMAPS,/str	85 X3	
** Structure	<2360ee8>, 18	tags, length=1726612	0, data length=17266120, refs=1:
CWL	FLOAT	656.281	
CHI2	FLOAT	Array[688, 512]	
EQUIV	FLOAT	Array[688, 512]	
GRAN	BYTE	Array[688, 512]	
FWHM	FLOAT	Array[688, 512]	
IMGBB	FLOAT	Array[688, 512]	
IMGNB	FLOAT	Array[688, 512]	
I_CORE	FLOAT	Array[688, 512]	
I_LOS	FLOAT	Array[688, 512]	
INTQS	FLOAT	0.736049	Dopplar abifta computed
MFGS	FLOAT	Array[464]	Doppler shins computed
MFGS_GRAN	FLOAT	Array[464]	from the coopNIRmoon data
MFGS2D	FLOAT	Array[688, 512]	nom the scannomean data
RMSBB	FLOAT	Array[464]	cube using 3 different meth.
V_CORE	FLOAT	Array[688, 512]	cube using 5 unerent metri.
V_LOS	FLOAT	Array[688, 512]	Polynomial fit to the core
V_LPFF	FLOAT	Array[688, 512]	
SUMBB	FLOAT	Array[688, 512]	Gaussian fit to the line, &

LPFF technique

Observations: gfpiYYYMMDD_hhmmss.sav

■ IDL \rightarrow restore, 'filename', /v

SCANBB	FLOAT	= Array[688, 512, 464]
SCANNB	FLOAT	= Array[688, 512, 464]
SCANNBMEAN	FLOAT	= Array[688, 512, 58]
SPHYSMAPS	STRUCT	= -> <anonymous> Array[1]</anonymous>
SSCANTABLE	STRUCT	= -> <anonymous> Array[1]</anonymous>

ScanTable: information about the parameters of how the GFPI scanned the spectral line

Observations: gfpiYYYMMDD_hhmmss.sav sScanTable

FILE	STRING	'Cam_Date=140812_	Fime=075540_sd.set'
TYPE	STRING	'sd'	
ISEQUENCE	INT	0	
NROWS	LONG	1	
IDFILTERNB	INT	1	
FILTERNB	FLOAT	6563.00	
IDFILTERBB	INT	0	
FILTERBB	FLOAT	6563.00	
START	INT	-448	
INCREMENT	INT	16	
FINAL	INT	464	
ACCUMULATIONS	INT	8	
POSITIONS	INT	Array[58]	Evennura tima in
NIMAGES	INT	472	Exposure time in
EXPTIME	LONG	12000	millicocondo
DATE	STRING	'2014-08-12'	minseconds
TIME	STRING	'07:55:43.597'	

To make science we need...

...a wavelength array!

To make science we need...

...a wavelength array!

FILE	STRING	'Cam_Date=140812_Time=0
TYPE	STRING	'sd'
ISEQUENCE	INT	0
NROWS	LONG	1
IDFILTERNB	INT	1
FILTERNB	FLOAT	6563.00
IDFILTERBB	INT	0
FILTERBB	FLOAT	6563.00
START	INT	-448
INCREMENT	INT	16
FINAL	INT	464
ACCUMULATIONS	INT	8
POSITIONS	INT	Array[58]
NIMAGES	INT	472
EXPTIME	LONG	12000
DATE	STRING	'2014-08-12'
TIME	STRING	'07:55:43.597'

5 min

Discuss in pairs and come up with an idea to calculate the wavelength array

Wavelength array (solution)

```
cwl = 6562.8
disp = stools_gfpi_dispersion(cwl*1e-10)
disp = disp *1d13
```

; units: Å (from *NIST* for example) ; spectral dispersion ; Á → mÁ

positions= sScantable.positionsnInc= sScantable.incrementnpositions= n_elements(positions)

Find the wavelength at rest selecting an area of quiet Sun and fitting the profile (e.g., gaussfit in IDL)

lambda = (findgen(npositions) - pos_core_QS) * disp * nlnc + cwl ; [mA]