

Data Calibration II

Spectropolarimetric Instruments

Christoph Kuckein

Learning goals for today

- 1. Familiarize with spectropolarimetric data
- 2. Learn how to read GRIS data
- 3. Represent GRIS data
- 4. Compute a wavelength array
- 5. Create a "magnetogram"
- 6. Learn how to normalize the Stokes profiles

Examples of Spectrographs

Examples of Spectrographs

Telescope	Instruments
GREGOR	
VTT	
DST	
DKIST	

2019 August 07

Examples of Spectrographs

Telescope	Instruments
GREGOR	GRIS
VTT	Echelle Spectrograph
DST	FIRS
DKIST	DL-NIRSP

2019 August 07

Examples of Imaging Instruments

Telescope	Spectroscopy	Spectropolari metry
GREGOR	Х	Х
VTT	Х	-
DST	Х	Х
DKIST	Х	Х

Basic Data Reduction

Spectropolarimetric data

- Dark correction
- Flat-field correction
- Polarimetric calibration
- Instrumental profile correction
- Normalization
- Wavelength calibration

GREGOR Infrared Spectrograph (GRIS)

Data Calibration II: Spectral Calibration --- Christoph Kuckein

GREGOR Infrared Spectrograph (GRIS)

Data Calibration II: Spectral Calibration --- Christoph Kuckein

GRIS Data Archive

Data archive for the GREGOR Infrared Spectrograph

GRIS data we are going to analyze

Reduced data

Index of /pub/gris/20140511/level1/ <

/		
11may14.003-01cc	16-Oct-2014 09:11	758019200
11may14.003-01cm	16-Oct-2014 09:12	1127364
11may14.003-02cc	16-Oct-2014 09:27	758019200
11may14.003-02cm	16-Oct-2014 09:27	1127364
11may14.004-01cc	16-Oct-2014 09:40	636737280
11may14.004-01cm	16-Oct-2014 09:41	947268
11may14.004-02cc	16-Oct-2014 09:54	636737280
11may14.004-02cm	16-Oct-2014 09:54	947268
11may14.004-03cc	16-Oct-2014 10:07	621579200
11may14.004-03cm	16-Oct-2014 10:07	924756

http://archive.leibniz-kis.de/pub/gris/20140511/level1/

CASSDA GUI for TIP and GRIS

http://archive.leibniz-kis.de/pub/gris

Basic Data Reduction

Spectropolarimetric data

- Dark correction
- Flat-field correction
- Polarimetric calibration
- Instrumental profile correction
- Wavelength calibration

IDL Pipeline for GRIS

- □ File: calddmonthyy.pro
 - dd: day (2 numbers)
 - month: string of 3 digits
 - year: year (2 numbers)

Pipeline for GRIS

□ Recent example from July 2019

end

Output of the GRIS pipeline

□ The output "cc" files are **fits** files with different extensions

- Extension 1: Stokes I
- Extension 2: Stokes Q
- Extension 3: Stokes U
- Extension 4: Stokes V

□ The output "cc" files are **fits** files with different extensions

- Extension 1: Stokes I
- Extension 2: Stokes Q
- Extension 3: Stokes U
- Extension 4: Stokes V

□ The data cube has 3 dimensions:

- Scan direction of the slit
- Wavelength
- Slit direction

Slit example

□ The output "cc" files are **fits** files with different extensions

- Extension 1: Stokes I
- Extension 2: Stokes Q
- Extension 3: Stokes U
- Extension 4: Stokes V

□ The data cube has 3 dimensions:

- Scan direction of the slit (pixels?)
- Wavelength (pixels?)
- Slit direction (pixels?)

What is the size of the 3 dimensions?

□ Use the routine: *rfits_im.pro* to read the GRIS "cc" file

- data = rfits_im("filename.cc",n,str,hdr)
 - n are the extensions
 - n = 1 (Stokes I), n = 2 (Stokes Q), n=3 (Stokes U), n=4 (Stokes V),
 - n = 5 (Stokes I), n= 6 (Stokes Q), ...
 - str: IDL structure with information about the data
 - hdr: header of the fits file (lots of information)

□ The data cube has 3 dimensions:

- Scan direction of the slit (pixels?)
- Wavelength (pixels?)
- Slit direction (pixels?)

What is the size of the 3 dimensions?

□ Use the routine: *rfits_im.pro* to read the GRIS "cc" file

data = rfits_im("filename.cc", n, str, hdr)

str:

IDL> help, str,/str ** Structure <25c9348>, 24 tags, length=144, data OBJECT STRING NAXIS INT 3 NAXIS1 INT 1010 NAXIS2 INT 469 NAXTS3 TNT 400 B: B B D O

BSCALE	FLOAT	1.00000
BZERO	FLOAT	0.00000
BITPIX	INT	32
DATE	LONG	20140511
ORIGIN	STRING	
BUNIT	STRING	
CDELT1	FLOAT	1.00000
CDELT2	FLOAT	1.00000
XTOT_START	INT	1
XTOT_END	INT	1020
YTOT_START	INT	1
YTOT_END	INT	1024
XSTART	INT	1
XEND	INT	1020
YSTART	INT	1
YEND	INT	1024
TELESCOPE	STRING	'GREGOR'
CAMERA	STRING	'IR1024'
FILENAME	STRING	'11mav14.003-02cc'

- □Read the whole map using a "for" loop
 - define the size of my map:
 - stokesI = fltarr(str.naxis3/4,str.naxis1,str.naxis2)
 - Read all Stokes I profiles of the whole map
 - for ii = 0, (str.naxis3/4) 1 do stokesl[ii,*,*] =
 rfits_im(file, ii*4 + 1)

Data Calibration II: Spectral Calibration --- Christoph Kuckein

- □Read the whole map using a "for" loop
 - define the size of my map:
 - stokesI = fltarr(str.naxis3/4,str.naxis1,str.naxis2)
 - Read all Stokes I profiles of the whole map
 - for ii = 0, (str.naxis3/4) 1 do begin
 - stokesl[ii, *, *] = rfits_im(file, ii*4 + 1)

- endfor

Do the same for Stokes Q (+2), U (+3) and V (+4)

- □Read the whole map using a "for" loop
 - define the size of my map:
 - stokesI = fltarr(str.naxis3/4,str.naxis1,str.naxis2)
 - stokesQ = stokesI

(...)

- Read all Stokes I profiles of the whole map
 - for ii = 0, (str.naxis3/4) 1 do begin
 - stokesl[ii, *, *] = rfits_im(file, ii*4 + 1)
 - stokesQ[ii, *, *] = rfits_im(file, ii*4 + 2)
 - -endfor

You have now a 3D data cube for Stokes I, Q, U and V

What is showing you dimension 1, 2 and 3?

Represent the dimensions and identify what you are seen

You have now a 3D data cube for Stokes I, Q, U and V

Dimension 1:

Scan direction of the slit
Dimension 2:

wavelength directionDimension 3:

slit direction

What is showing you dimension 1, 2 and 3?

Represent the dimensions and identify what you are seen

Next needed calibration steps to make the data science ready?

□ Calibration:

- Compute wavelength array
- Normalization of the spectra

Instrumental profile removal (new GRIS pipeline usually takes care of this automatically)

□ Steps to follow:

Identify the lines in your spectra (use an atlas or Google "bass2000")

Hint: Spectral window 1µm (have a look between 10825 and 10840 Å)

□ Steps to follow:

Identify the lines in your spectra (use an atlas or Google "bass2000")

2019 August 07

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Plot a 2D slit-reconstructed image centered at the He I red line

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Do the same but for a spectral region without spectral lines (continuum)

Data Calibration II: Spectral Calibration --- Christoph Kuckein

Magnetogram

□ Let us construct something similar to a **magnetogram**

Instead of using the Stokes I cube, use the Stokes V cube which gives information about the circular polarization, which gives information about the magnetic field along the line-of-sight (hence, this is equivalent to a magnetogram but not in Gauss units)

Steps to follow:

- Compute an average Stokes V spectrum across the whole field-of-view
- Now concentrate on the largest average Stokes V profile
- Choose the peak of one of the lobes of the Stokes V profile (which peak do you think is the correct one?)

Magnetogram

□ Let us construct something similar to a magnetogram

2019 August 07

Magnetogram

Let us construct something similar to a magnetogram

Data Calibration II: Spectral Calibration --- Christoph Kuckein

We come back to the wavelength array

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map

Compute an average quiet-Sun profile in the quiet-Sun area (no magnetic structures inside)

Coordinates: Stokes[55:90,*,440:460]

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map
- Compute dispersion

Data Calibration II: Spectral Calibration --- Christoph Kuckein

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map
- Compute dispersion (use the two telluric lines and the provided save file with the atlas *fts_atlas_10830.sav*)

Why the telluric line?

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map
- Compute dispersion (use the two telluric lines and the provided save file with the atlas *fts_atlas_10830.sav*)

Data Calibration II: Spectral Calibration --- Christoph Kuckein

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map

Compute dispersion (use the two telluric lines and the provided save file with the atlas *fts_atlas_10830.sav*)

– Dispersion is around 18.05 mÅ/px

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map
- Compute dispersion (use the two telluric lines and the provided save file with the atlas *fts_atlas_10830.sav*)
 - Dispersion is around 18.05 mÅ/px
- Construct wavelength array:

10832.108 Á

$$\vec{\lambda} = (\vec{x} - x_{ref}) * disp + \lambda_{ref}$$

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map
- Compute dispersion (use the two telluric lines and the provided save file with the atlas *fts_atlas_10830.sav*)
 - Dispersion is around 18.05 mÅ/px
- Construct wavelength array:

elength array: $\vec{\lambda} = (\vec{x} - x_{ref}) * disp + \lambda_{ref}$ $\vec{\lambda} = \vec{\lambda} - (\Delta \lambda_{orbital motions} + \Delta \lambda_G)$

 $\Delta \lambda_{\rm G} = (GM_{\odot}/R_{\odot}c^2)\lambda$

Kuckein et al. 2012b (Appendix A and B)

□ Steps to follow:

- Identify the lines in your spectra (use an atlas or Google "bass2000")
- Select a quiet-Sun area in the map
- Compute dispersion (use the two telluric lines and the provided save file with the atlas *fts_atlas_10830.sav*)
 - Dispersion is around 18.05 mÅ/px
- Construct wavelength array:

10832.108 Á

$$\vec{\lambda} = (\vec{x} - x_{ref}) * disp + \lambda_{ref}$$

Problems with this method?

- Telluric lines are not in all spectral windows

Normalization

Divide all Stokes profiles by a constant (mean value of the continuum)
 Steps to follow: 1) Select quiet Sun area (done before)

- □ 2) Computer average Stokes I profile inside of quiet-Sun area
- □ 3) Select an area of the spectrum which corresponds to the quiet Sun
 - also compare to the atlas to check that there are no spectral lines there

Normalization

Divide all Stokes profiles by a constant (mean value of the continuum)
 Steps to follow: 1) Select quiet Sun area (done before)

- 2) Computer average Stokes I profile inside of quiet-Sun area
- □ 3) Select an area of the spectrum which corresponds to the quiet Sun
 - also compare to the atlas to check that there are no spectral lines there
- □ Compute the average in that "quiet-Sun" spectral range
- Divide your Stokes I, Q, U and V vector by that constant

Instrumental profile removal

- The new GRIS pipeline should remove the instrumental profile
- □ If you have the impression that your profile is not flat, you can follow these tips:
 - I. Interpolate the atlas profile to your wavelength range
 - 2. Divide both spectra
 - 3. Make a polynomial fit to the divided spectra excluding the areas with spectral lines (only quiet Sun areas)
 - 4. The outcome polynomial you can use to flatten your spectra

