Worries and a wish when linking 1D and 3D models

Hans-G. Ludwig

ZAH – Landessternwarte, University of Heidelberg, Germany

Overview

- Worry 1: turbulent pressure and calibrating the mixing-length parameter
- Worry 2: how to patch 3D surface models to 1D interior structures
- Both points above related to quasi-stationary background structure
- Wish: learning how to calculate mode excitation rates
 - related to dynamics, oscillation-convection interaction
 - brought two 3D models of different extent in depth, otherwise identical

Calibration of the mixing-length parameter α_{MLT}

"Historic" figure from SCORe96 proceedings; left: mean entropy; right: spatially resolved profiles

- Horizontal mean entropy profile superadiabatic in subphotospheric layers
- Spatially resolved profiles exhibit entropy plateau, value s_{env}
 - identified with asymptotic value of the (almost) adiabatically stratified part of the convective zone
- Entropy value matched by choosing α_{MLT} in mixing-length models
- Side point here: also depends on assumed atmospheric $T(\tau)$ relation

Calibration of the mixing-length parameter α_{MLT}

From SCORe96 proceedings; triangles: 2D models; solid line: solar evolutionary track using calibration

- Grossly, functional dependence withstood the test of time
- IRD coverage increased, metallicity dependence investigated, $T(\tau)$ -relation refined

Are mean 3D and calibrated mixing-length model similar?

Specific entropy vs log optical depth (Ludwig et al. 1999)

- Thick solid lines: τ -averages of entropy of hydro model
- Thin solid lines: calibrated MLT model with uncertainties
- Dotted lines: s_{env}
- Main point: entropy minimum matched, correspondence in deeper layers is so-so
- τ -averages suitable / relevant?

Rationale for calibrating 3D against 1D models based on MLT

- Why not simply provide a table of entropy jumps as function of stellar surface parameters? (I. Roxburgh, H. Spruit, ...)
 - Ithin surface layer does not matter, discontinuous jump is sufficiently accurate description (M. Schwarzschild?)
- Asteroseimic answer: nowadays we want a detailed description of the superadiabatically stratified surface layers \rightarrow "surface effects"
- Another answer: physics put in MLT allows us to make more robust inter- and extrapolation of the thermal structure
 - provided: the mixing-length parameter is not rapidly varying
 - provided: MLT based models give a reasonable match to mean 3D structure

Turbulent pressure trouble

Red giant model, $T_{\rm eff}$ =3600K, $\log g$ =1.0, [M/H]=0, $P_{\rm turb} = f_{\rm turb} \rho v_{\rm conv}^2$

• Principal difficulty to match 3D structure \rightarrow meaning of α_{MLT} -fit?

Need for more sophisticated standard convection model

- Convection model necessary including effects of overshoot and turbulent pressure
 - should be widely accepted (or acceptable)
 - reasonably simple
 - sufficiently flexible to be able to match detailed calculations
 - able to capture convection-oscillation interaction?

(DA white dwarf models with $T_{\rm eff} = 12\,100\,{\rm K}$; complete convective envelope embedded in model)

Envelope matching – the classical procedure

Fig. 7. Pressure as a function of depth for an averaged 3-D model (full drawn), and for the comparison standard envelope (SEM) model (dashed). The dashed-dotted curve shows the pressure stratification of a 3-D model where the gradient of the turbulent pressure has been artificially removed from the vertical pressure balance. The upper abscissa shows the corresponding position in a complete model, in terms of the fractional radius r/R

(From Rosenthal et al. 1999)

- Matching procedure:
 - take full stellar structure model
 - remove surface layers above a selected matching point
 - replace the removed part by suitably averaged 3D structure
 - matching criteria: continuity and smoothness
- Roughly: 3D structures make acoustic cavity larger which results in lower frequencies
- Is this what one should do? What about requiring a prescribed radius?
 - lacksim ightarrow solar MLT calibration: match solar luminosity and radius at given age

Side note 1: Including s_{env} when matching $\langle 3D \rangle$ to 1D structures

- Red: Asymptotic entropy s_{env}
- Blue: MLT model, gray Eddington $T(\tau)$ relation, $\alpha_{\rm MLT} = 1.7$
- Black: Mean (geometrical scale) 3D model
- Green: MLT extrapolation of 3D model, $\alpha_{\rm MLT} = 3.6$
- MLT dialect a la Mihalas, no turbulent pressure considered

Side note 2: Canuto-Mazzitelli provide better match to $\langle \rm 3D\rangle$ structure for the Sun

Left: MLT based solar model; right: theory of Canuto & Mazzitelli (1991)

- Vernazza $T(\tau)$ -relation (courtesy Jørgen) used in right plot
- Jørgen as well as Antia & Basu were pointing this out at SCORe96 workshop

Mode excitation and damping

Powerspectra of flux of two solar 3D models, 3.7 and 8.4 ${
m Mm}$ vertical extent

- How do I calculate the mode excitation rates in a 3D model?
- Can we get hold of the damping rates to predict mode amplitudes?
- \checkmark Can we at least predict relative mode amplitudes? (\rightarrow Regner?)