Thoughts on the 1 mHz dip, and the description of granulation seen in power spectra

Hans-G. Ludwig

ZAH – Landessternwarte, University of Heidelberg, Germany

Overview – What produces the "dip" or "kink"?

- Why do my CO⁵BOLD simulations not really match the granulation background in the Sun?
 - \checkmark discrepancy particularly in the dip/kink region around $1\,\mathrm{mHz}$

Overview – What is the shape of the granulation background?

"I would like to know the light curve of an individual granule!" (Thomas Kallinger, Meudon, 2015)

The dip/kink – interpretation as effect of mesogranulation

- Soho/Virgo photometry: a) SPM-blue,
 b) SPM-green, c) SPM-red, d) PMO6
- Granulation background (purple dashed lines) result of superposition of two components: granulation and larger-scale mesogranulation

Fitting results of Michel et al.

	4		4		
Data set	A_1	B_1	A_2	B_2	D
	σ_{A1}	σ_{B1}	σ_{A2}	σ_{B2}	σ_D
	$\left(\frac{ppm^2}{\mu \text{Hz}}\right)$	(s)	$\left(\frac{ppm^2}{\mu \text{Hz}}\right)$	(s)	$\left(\frac{ppm^2}{\mu \text{Hz}}\right)$
SPMb	1.52	1292	0.55	433	$4 \ 10^{-3}$
	0.02	18	0.02	12	$3 \ 10^{-3}$
SPMg	0.74	1302	0.25	419	$1 \ 10^{-3}$
	0.02	37	0.02	27	$3 \ 10^{-3}$
SPMr	0.26	1321	0.07	403	$1 \ 10^{-3}$
	0.02	105	0.01	89	$3 \ 10^{-3}$
PMO6	0.50	1349	0.14	439	20 10^{-3}
	0.02	55	0.02	42	$3 \ 10^{-3}$

Background modelled with two super-Lorentzians and noise component

$$P(\nu) = \sum_{i=1}^{2} \frac{A_i}{1 + (B_i \nu)^4} + D$$

Taking the numbers for PMO6: the granular and mesogranular component contribute approximately equally to the fluctuations in the time domain.

Is there a depression the velocity power spectrum?

More aspects

- \checkmark Kallinger et al. (2014): "depression" seen in other main sequence stars, located around $\nu_{\rm max}/2$
- Saroff et al. (2013): interpretation of the high-frequency component of the background as due to faculae
- My take on the interpretation as mesogranulation? CO⁵BOLD simulations for solar granulation give a relation between temporal and spatial "contrast" (Ludwig 2006)

$$l \frac{\sigma_I}{\langle I \rangle} \approx 0.4 \ l_{\rm gran} \frac{\delta I_{\rm rms}}{\overline{I}}$$

l: scale on which the temporal fluctuations are observed, $l_{\rm gran}$: scale of granulation

If mesogranulation is an enlarged version of granulation one would expect that its spatial contrast is about $1/10^{\text{th}}$ of the granulation contrast. Should be visible ...

Here an image showing mesogranulation and granulation!!!

Here an image showing mesogranulation and granulation!!!

Made-up of course, contrast rather 15 % for granulation and 5 % for mesogranulation

What effect causes the dip?

- Robert & Lionel: dip present in their simulations of long duration without magnetic field
- Remo asked: what duration is necessary to see the solar dip?
 - answer (calculated theoretically after a long working day): 3 h for a 1σ -detection, 27 h for 3σ
- In any case this means: dip physics accessible with simulations
- Plans for the workshop:
 - Iooking at the structures living at temporal frequencies around 1 mHz
 - Iooking at Soho/Virgo data, including the center-to-limb variation
- Is the dip a consequence of oscillation-convection interaction? (Robert thinks "no", but why?)

Lightcurve of an individual granule?

- Regner: Two-sided exponential already most of the answer?
- Serious attempt (mostly by Mia) to isolate and follow granules. However...
 - what in fact is a granule?
 - how can one track a granule?
- Going simpler: looking at the brightness evolution of a small (granular size) fixed patch
 - there are moments of maximum brightness
 - quiz: what typically happens at moments of maximum brightness?
- Further thought: disk-integrated brightness is the result of a superposition of many signals having the same probability distribution
 - s can one exploit the central limit theorem effectively?
- What about the loss of the arrow of time? Mark: it is just averaging...

And now something completely different: granulation in a Cepheid (model)

