Thoughts on the 1 mHz dip, and the description of granulation

 seen in power spectraHans-G. Ludwig
ZAH - Landessternwarte, University of Heidelberg, Germany

Overview - What produces the "dip" or "kink"?

- Why do my CO^{5} BOLD simulations not really match the granulation background in the Sun?
- discrepancy particularly in the dip/kink region around 1 mHz

Overview - What is the shape of the granulation background?

- "I would like to know the light curve of an individual granule!"
(Thomas Kallinger, Meudon, 2015)

Light curve simulator?

The dip/kink - interpretation as effect of mesogranulation

- Soho/Virgo photometry: a) SPM-blue, b) SPM-green, c) SPM-red, d) PMO6
- Granulation background (purple dashed lines) result of superposition of two components: granulation and larger-scale mesogranulation

Fitting results of Michel et al.

Data set	A_{1}	B_{1}	A_{2}	B_{2}	D
	$\sigma_{A 1}$	$\sigma_{B 1}$	$\sigma_{A 2}$	$\sigma_{B 2}$	σ_{D}
	$\left(\frac{p p m^{2}}{\mu \mathrm{~Hz}}\right)$	(s)	$\left(\frac{p p m^{2}}{\mu \mathrm{~Hz}}\right)$	(s)	$\left(\frac{p p m^{2}}{\mu \mathrm{~Hz}}\right)$
SPMb	1.52	1292	0.55	433	410^{-3}
	0.02	18	0.02	12	310^{-3}
SPMg	0.74	1302	0.25	419	110^{-3}
	0.02	37	0.02	27	310^{-3}
SPMr	0.26	1321	0.07	403	110^{-3}
	0.02	105	0.01	89	310^{-3}
PMO6	0.50	1349	0.14	439	2010^{-3}
	0.02	55	0.02	42	310^{-3}

- Background modelled with two super-Lorentzians and noise component

$$
P(\nu)=\sum_{i=1}^{2} \frac{A_{i}}{1+\left(B_{i} \nu\right)^{4}}+D
$$

- Taking the numbers for PMO6: the granular and mesogranular component contribute approximately equally to the fluctuations in the time domain.

Is there a depression the velocity power spectrum?

More aspects

- Kallinger et al. (2014): "depression" seen in other main sequence stars, located around $\nu_{\max } / 2$
- Karoff et al. (2013): interpretation of the high-frequency component of the background as due to faculae
- My take on the interpretation as mesogranulation?

CO ${ }^{5}$ BOLD simulations for solar granulation give a relation between temporal and spatial "contrast" (Ludwig 2006)

$$
l \frac{\sigma_{I}}{\langle I\rangle} \approx 0.4 l_{\mathrm{gran}} \frac{\delta I_{\mathrm{rms}}}{\bar{I}}
$$

l : scale on which the temporal fluctuations are observed, $l_{\text {gran }}$: scale of granulation

- If mesogranulation is an enlarged version of granulation one would expect that its spatial contrast is about $1 / 10^{\text {th }}$ of the granulation contrast.
Should be visible ...

Here an image showing mesogranulation and granulation!!!

Here an image showing mesogranulation and granulation!!!

Made-up of course, contrast rather 15% for granulation and 5% for mesogranulation

What effect causes the dip?

- Robert \& Lionel: dip present in their simulations of long duration without magnetic field
- Remo asked: what duration is necessary to see the solar dip?
- answer (calculated theoretically after a long working day): 3 h for a 1σ-detection, 27 h for 3σ
- In any case this means: dip physics accessible with simulations
- Plans for the workshop:
- looking at the structures living at temporal frequencies around 1 mHz
- looking at Soho/Virgo data, including the center-to-limb variation
- Is the dip a consequence of oscillation-convection interaction?
(Robert thinks "no", but why?)

Lightcurve of an individual granule?

- Regner: Two-sided exponential already most of the answer?
- Serious attempt (mostly by Mia) to isolate and follow granules. However...
- what in fact is a granule?
- how can one track a granule?
- Going simpler: looking at the brightness evolution of a small (granular size) fixed patch
- there are moments of maximum brightness
- quiz: what typically happens at moments of maximum brightness?
- Further thought: disk-integrated brightness is the result of a superposition of many signals having the same probability distribution
- can one exploit the central limit theorem effectively?
- What about the loss of the arrow of time?

Mark: it is just averaging. . .

And now something completely different: granulation in a Cepheid (model)

$$
t \times 10^{6}, \mathrm{~s}
$$

