Local Turbulence at GREGOR

Oskar von der Lühe, Thomas Berkefeld, KIS Detlev Sprung, Erik Sucher, Karin Stein, IOSB

1

Motivation

 Is there a local effect on turbulence on the GREGOR platform?

 Measure C_n² ("optical turbulence") at telescope height in the free atmosphere and compare to measurements on the GREGOR platform

Previous measurements

Garcia-Lorenzo et al. 2009

SCIDAR measurements at Izana 2002 - 2009 Monthly averages of vertical profiles

Fig. 3. Average profiles of C_N^2 at each month of 2004. Each value is the mean of all data to its height. The systematic measurements with cute-SCIDAR instrument in JKT began on February 2004. The vertical axis is the height above the sea level in km. The horizontal lines indicate the observatory height (2.4 km). The X axis is the logarithmical scale of the C_N^2 in unit of $m^{-2/3}$ (the range goes from 10^{-20} to $10^{-14} m^{-2/3}$).

Free Atmosphere Turbulence

Laser Scintillometer SLS40 (SCINTEC)

- wavelength 670 nm, time resolution: 1 minute
- measurements between September 2012 and March 2016 (with gaps)

Receiver at GREGOR

• horizontal distance 75 m

GREGOR Science Meeting Nov 2016 Local Turbulence°)

• height: 30 m above ground

Laser-Scintillometer SLS40 transmitter

Local Turbulence Measurements

- Three Sonic anemometers (2x Gill-HS50 (GB) and 1x Thies (Germany))
- Measurements between May 2015 and March 2016
- measurement of time series of
 - 3 wind components u,v,w
 - sound velocity \rightarrow T_s \approx T_v
- time resolution 0.02 s
- FFT-analysis on time periods of 5 min

$$\Rightarrow C_T^2 \Rightarrow C_n^2$$

$$C_n^2 = \left(79.2 \cdot 10^{-6} \frac{\overline{P}}{\overline{T}^2}\right)^2 \cdot C_T^2$$

- T: temperature
- T_s: Sonic temperature
- T_v: virtual temperature
- *n*: refraction index
- p: air pressure
- C_T^2 : structure function parameter of temperature C_n^2 : structure function parameter of refraction index

Meteorological data

- Temperature at the height of the receiver of the scintillometer (0.3 m above telescope base level)
- o Temperature 1.3 m above telescope base
- Temperature and relative humidity close to the sonic anemometers (additional sensors)
- o Air pressure
- o Wind direction (derived from sonic data)
- Windspeed (derived from sonic data) GREGOR Science Meeting Nov 2016 - Local Turbulence

Wind statistics

Measured temperature above the GREGOR-platform

- T₀: Temperature T just above the surface of the platform
- T_{scint}: Temperature at the receiver of the scintillometer
- T: T at the Sonic anemometer close to the Telescope
- S: T at Sonic anemometer at the south end
- N: T at Sonic anemometer at the north end

Time series C_n² (day time) sonic anemometers

C_n² diurnal variations, Scintillometer (monthly from June – November 2014)

All C_n^2 -data (5-min averages), June 2015 dome open

C_n² comparison measurements at the North site and at the South site of the GREGOR platform

14

Comparison r₀, 3rd August 2015

GREGOR Science Meeting Nov 2016 - Local Turbulence

15

GAOS estimate of r_{0,500}

• Fried parameter $r_{0,500}$ derived from variance of the total mode wavefront error measured by the GAOS wavefront sensor (mode index N) $\int \sigma^2 v \cos \eta^{-\frac{3}{5}}$

$$r_0 = D \cdot \left[\frac{\sigma_{N,\text{GAOS}}^2}{1.19 \cdot \sigma_{N,\text{theor}}^2} \right]$$

- Low order modes (N=2,3,4 i. e. defocus and ast) known to result in unrealistically high r₀ estimates – outer scale of turbulence?
- Including higher order modes gives r₀ values which are consistent with quality of observations

Ground Layer contribution

 Assume that all of GAOS r₀ is caused by a strong ground layer – how thick is it?

r _{0,500} [m]	$C_n^2 = 3.10^{-13} \text{ m}^{-2/3}$	$C_n^2 = 3.10^{-14} \text{ m}^{-2/3}$
0.05	7.4	73
0.10	2.3	23
0.20	0.7	7.3

Ground layer thickness in [m]

Preliminary Conclusions

- C_n² measurements consistently significantly higher that ground layer from Fuensalida et al., (2009) – height resolution of sodar?
- C_n² measurements comparable to low altitude (10m) data from Haleakala (ATST Site testing report)
- Diurnal and seasonal variations at the telescope level
- Northern wind directions result in a gradient of C_n² towards S, with the N and the SLS consistently showing mountain ridge conditions
- Southern winds cause nearly the same strength of turbulence at all sensors
- The inferred Fried parameter from GAOS indicate that the high turbulence must be confined to a thin ground layer