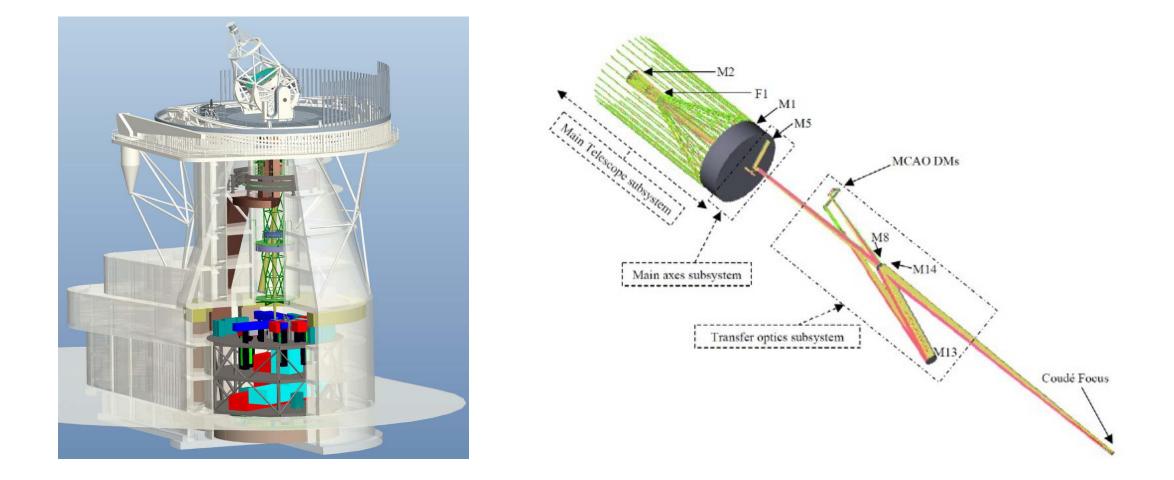


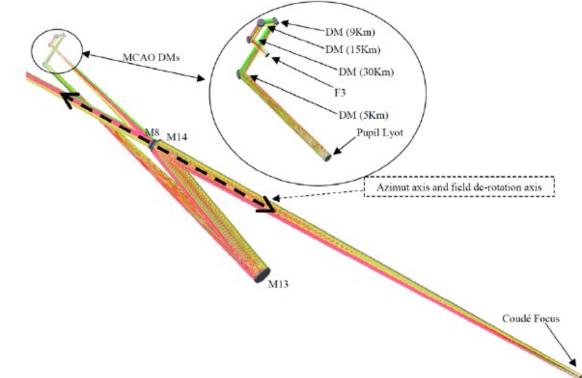
Work Package 7 Multi-Conjugate Adaptive Optics for EST

O. von der Lühe, KIS with the project partners



Conventional (left) and multi-conjugate (right) solar adaptive optics (Schmidt et al., Astron. Astrophys. 597, L8, 2017). Conventional AO produces a sharp image only at the center of the field, limited to a single isoplanatic patch of 5 arcsec. MCAO extends the compensated field to 30 arcsec with three deformable mirrors in this case.

EST MCAO System (Design Study)



EST MCAO System

- The EST multi-conjugate AO system consists of four deformable mirrors for distant layers in the atmosphere which complement the deformable mirror in the pupil plane
- So far, solar MCAO systems used at most two DMs with conjugates in the higher atmosphere
- Present studies are limited to simulations of atmospheric propagation

Previous Activities

- EST Design Study
 - Conceptual Design
- SOLARNET I (WP70)
 - MCAO simulation, DM organization
 - Turbulence Characterization at RdLM & OT
 - Influence of EST building on local turbulence
- GREST (WP6)
 - Deformable mirrors (45 degree inclination)

Goals of SOLARNET II MCAO JRA

• Carry out all necessary remaining research work needed to complete a full **Preliminary Design** for the EST MCAO system

– a **PD** is a design where all major technical choices are solved

- Systems engineering, choice of WFS concept, choice of DM technology
- Do the research and develop the methods needed to understand MCAO performance and its limitations
- Demonstrate the viability of the design and methods on the sky
 - Build a prototype which implements pupil DM and four HA DMs and the WFS to demonstrate a closed-loop system on the sky
 - Use prototype to verify performance, control concepts, simulations etc.

Work package No	Workpackage Title	Lead Participant No	Lead participant short name	Person Month	Start Month	End Month
1	Project Coordination and Management	1	KIS	221/61	1	48
2	NA1: Coordination for improved exploitation of solar physics infrastructures	4	SU	54/25	1	48
3	NA2: Network activities to foster synergistic collaborations	8	UNICT	67/67	1	48
4	NA3: Engagement, Dissemination and Communication	12	NU	53/26	1	48
5	JRA1: Towards a European Solar Data Centre	1	KIS	228/214	1	48
6	JRA2: Advanced instrumentation development		IAC	269/218	1	48
7	JRA3: Multi-Conjugate Adaptive Optics for EST	1	KIS	301/143	1	48
0	JRA4: Solar Physics Research Integrated Network	1	KIC	249/150	1	4.0
8	Group - SPRING	T	KIS	248/150	T	48
9	TA1: Trans-National Access Programme	4	SU	39/39	1	48
10	VA1: Virtual Access Programme	3	UiO	79/79	1	48

- Develop and a prototype MCAO system which is representative for the EST MCAO,
- Test the prototype in the laboratory and at the GREGOR solar telescope in Tenerife,
- Develop and test alternative concepts based on neural networks for controlling the MCAO,
- Develop tools to characterize the performance of solar MCAO as an input to WP 5,
- Characterize the high altitude turbulence at the EST sites and investigate turbulence prediction,
- Develop EST-specific wave front sensor and deformable mirror technology.

Participants and Personnel

Work package number		Le	Lead beneficiary			KIS			
Work package title		JRA3 Multi-Conjugate Adaptive Optics for EST							
Participant number		2	6	34	33	4	35		
Short name of participant	KIS	IAC	INAF	Durham	Oviedo	SU	HES-SO	IOSB	
PMs per participant:		28	29	12	26	12	10	2	
Start month		1		End month		48			

Description of Work - Subworkpackages

- Prototype development KIS, IAC, Durham, Oviedo, ALPAO
- Neural Network Control Oviedo, IAC, KIS
- Performance characterization SU, HESS-SO KIS, IOSB)
- Technology development INAF, ALPAO

7.1 Prototype Development

- Build, test and verify a version of the EST MCAO system which is scaled down to a 1.5 m pupil (instead of 4 m)
 - Error budgets through dynamic simulations
- Perform on-sky testing and verification at GREGOR
 - Goal is to demonstrate compensation of a 1 arcmin field
- Acquire four volume control DMs
 - Two will be purchased by KIS for further use with a GREGOR MCAO
 - Two will be provided by ALPAO
 - Use existing pupil conjugate DM at GREGOR
- Use prototype to test/verify new wavefront sensing and control concepts

7.2 Neural Network Control System

- Evaluate the feasibility of a tomographic reconstructor based on Convolutional Neural Networks (CNN)
- Take advantage of the high potential of deep-learning techniques which are especially adapted to the problem
 - Oviedo has already successfully implemented such a technique for night time AO applications
- Integrate CNN control system into prototype for on-sky evaluation/verification

7.3 Performance Characterization and Prediction

- Develop tools to characterize the performance of the EST MCAO system and to generate the information needed to remove the residual disturbances from observed data (LE-PSF; interface to WP 5)
- Differential Characterization of RdlM and OT sites
- Evaluate forecast techniques for relevant atmospheric parameters

7.4 Technology Research

- Strategies to parallelize wave front sensing for a 4m aperture telescope
 - Distributed wave front sensing with several cameras
- Deformable mirror technologies
 - Heat management for large format DMs for solar applications
 - Migration of CHARA anisotropic actuator patterns for 45° illumination for solar applications

Deliverables

Deliverables (brief description and month of delivery)

- D7.1 Report on Prototype Opto-Mecanical Design (T0+8)
- D7.2 Laboratory Integration and DM Test Report (T0+18)
- D7.3 Prototype Lab Test Report (T0+30)
- D7.4 Prototype On-Sky Test Report (T0+48)
- D7.5 Prototype Final Report (including data evaluation report) (T0+48)
- D7.6 Simulation Results (T0+15)
- D7.7 Neural Network Lab Integration and Test Report (T0+27)
- D7.8 Neural Network On-Sky Integration and Test Report (T0+39)
- D7.9 Report on PSF Estimation (T0+30)
- D7.10 Report on Data Analysis and Transfer to WP 5 (T0+42)
- D7.11 Results of Turbulence Profile Comparison (T0+30)
- D7.12 Turbulence Prediction Report on available measurements (T0+12)
- D7.13 Turbulence Prediction Report model geometry (T0+24)
- D7.14 Turbulence Prediction Report on preliminary analysis of model performances (T0+36)
- D7.15 Turbulence Prediction Final report on strategy for model calibration and validation (T0+48)
- D7.16 Modular WFS Report on the preliminary opto-mechanical design of the demonstrator (T0+12)
- D7.17 Modular WFS Report on hardware implementation and integration of the WFS prototype (T0+30)
- D7.18 Modular WFS Report on laboratory tests (T0+36)
- D7 10 Modular WES Final report on system performances (T0 + 48)

1 Prototype development	
Opto-mechanical design	
Fabrication lab setup	+1
Fabrication wave front sensor	+1000
Control system integration	+10000
Integration lab setup	+
Delivery DM 1+2	
Delivery DM 3 + 4	
Lab tests	+
Prototype installation telescope	9
On-Sky Campaign 1	🙀 13.08
On-Sky Campaign 2	▶♦ 29.10
On-Sky Campaign 3	▶¢ 13.05
On-Sky Campaign 4	>> 22.07
Data evaluation	+
Integration neural network control lab test	• 18.12
Integration neural network control sky test	19.11
Simulation	+
Final Report	+
Neural Network Control	
Simulation, Training Lab test	H
Simulation, Training Sky test	H H
Performance Characterization	
PSF Estimation	
Data Analysis	
Turbulence Profile measurements	
Turbulence Profile Analysis	
Turbulence Prediction	
Survey	
Design model geometry	SI
Preliminary analysis	H
Final analysis	H
chnology Development	
Modular WFS	
Demonstrator design	
Implementation and integration	भ
WFS Test	120102030405060708091011120102030405060708091011120102030405060708091011120102030405060708091011
Final report	
tudy DM Cooling	
Study Actuator Geometry	