

A Small Aperture Synoptic Solar Telescope - Baseline Design

Dirk Soltau

Leibniz-Institut für Sonnenphysik (KIS)

2nd SPRING Progress Meeting February 18th, 2020

Good old GONG instrument: Michelson interferometer [] One line only (Ni 6768 Å)

Legacy: FP7 SOLARNET2017 WP80

18.02.2021

Requirements from WP 80 (SOLARNET 2017) :

- Detector: 4k x 4k
- Spectral resolution: 8 pm
- Cadence: 30 60 s
- Velocity sensitivity: 10 m/s
- Magnetic sensitivity: 10 G (los)
- Two types of telescopes:
 - Small (D < 250 mm)
 - Large (D > 500 mm)
- GONG sites (6)

Many spectral lines (17!) in 3 wavelength bands

S. No.	Spectral line (Å)	Element	Formation Height	SNR required	Q-factor of the line
1	2022	Coll K	(km)	1400	3400
	3933	Call K		1400	3400
2	3968	Call H		1000	4600
3	5173	Mg I b1	595±5	450	10300
4	5250	Fel		250	18900
5	5434	Fel	556±25	350	13800
6	5576	Fel	310±15	350	13300
7	5890	Na I D2	927±35	450	11000
8	5896	Na I D1		550	8500
9	6173	Fel	276±26	320	14700
10	6301	Fel	337±23	350	13300
11	6302	Fel		320	15500
12	6563	HΙα	1200-1700	600	8100
13	6768	Ni I		300	16000
14	7090	Fel	284±32	420	10800
15	8542	Call		800	6000
	(4A window)				3
16	10830	Hel		1400	600
17	15648	Fel		500	9500

Which spectroscopic device can do that?

	Imaging	Multi line	High cadence
Michelson	Yes	No	yes
Grating	No (depends)	Yes	No (depends)
Fabry- Perot	Yes	Yes	Yes

Many spectral lines (17!) in 3 wavelength bands

S. No.	Spectral line (Å)	Element	Formation Height (km)	SNR required	Q-factor of the line
1	3933	Ca II K		1400	3400
2	3968	Ca II H		1000	4600
3	5173	Mg b1	595±5	450	10300
4	5250	Fel		250	18900
5	5434	Fel	556±25	350	13800
6	5576	Fel	310±15	350	13300
7	5890	Na I D2	927±35	450	11000
8	5896	Na I D1		550	8500
9	6173	Fel	276±26	320	14700
10	6301	Fel	337±23	350	13300
11	6302	Fel		320	15500
12	6563	HΙα	1200-1700	600	8100
13	6768	Ni I		300	16000
14	7090	Fel	284±32	420	10800
15	8542 (4Å window)	Call		800	6000 G
16	10830	Hel		1400	600
17	15648	Fel		500	9500

Which spectroscopic device can do that?

	Imaging	Multi line	High cadence
Michelson	Yes	No	yes
Grating	No (depends)	Yes	No
Fabry- Perot	Yes	Yes	Yes

Design driving parameters:

	Value	Why?
Telescope type	2 mirror	Short Proven concept (SOLIS)
Etalon diameter	120 mm useful diameter	Largest low risk diameter according to ICOS
Detector	Pixel scale: 0.5"/pixel	Resolution

Design driving parameters:

	Value	Why?	
Etalon diameter	120 mm useful diameter	Largest low risk diameter according to ICOS	[] 120 mm < D < = 250 mm
Etalon configuration	Collimated rather than telecentric	More compact	□ Punil size = 120 mm
Detector pixel size	12 μm	Andor Balor 17F-12 4k x 4k, 16 bit, low noise, 49.5 x 49.5 mm ² , 18.5 ms readout time, 16 Gb/s	focal length = 4300 mm
Space	Limited (e.g. Container)	Proven concept	

Designing a compact 2 mirror telescope Gregorian

pro	con
Real focus in F1	Long
	Alignment tolerance
	FOV

pro	con
compact	baffling
Alignment more tolerant	
FOV	

Designing a Cassegrain telescope Given: f = 4300, appr. Length = 1000 mm

Important parameters:

- Back focal length
- Central obscuration

Designing a Cassegrain telescope Given: f = 4300, appr. Length = 1000 mm

Approach I: One telescope, three etalons Teaming with AMOS

- D = 180 mm
- f = 4300 mm
- Etalon size = 120 mm
- Collimated configuration
- One telescope, three etalons (500 nm, 850 nm, 1560 nm)
- Space for calibration unit
- Space for dual beam polarimeter
- Tip tilt sensing/correction

AMOS design Vers 3.0

Blue shift because of angle of incidence

18.02.2021

Approach II: One telecope, one etalon, one wavelength band

Sacrifice	Gain
Aperture: 180 mm 🛛 120 mm (Etalon diameter)	Simplicity: no relay optics, 6 mirrors less
One telescope, 3 etalons = easier handling	Much more compact
	Design polarization free (no calibration unit(?))
	Better optical performance
	blue shift = 70 mÅ (smallest possible)] gain in cadence

Telescope with etalon(s) in front

18.02.2021

Telescope with etalon(s) in front

18.02.2021

Housing 5898,00 mm . appr. 630 m appr. 275 mm 1 Optics Container Operations Container ► appr. 430 mm

Issues

- Etalon performance
 - What will be the Finesse?
 - One etalon or two?
- Thermal management
 - Heat rejection window
 - Vacuum in turret?
- Image stability
 - Tip tilt correction
- False light
 - Day blindness
 - Ghosts
- S/N
 - Photon flux

All these issues are under investigationbut only experiments and measurements will give reliable answers.

We need a testbed and a prototype₂₀

VTT as testbed for a full disk telescope

Bypass the telescope mirrors and feed the optic lab directly

Useful e.g.

- To test etalons
- To test tiptilt sensor
- To test flatfielding strategies

21

First Full Disk HELLRIDE observations (25.08.2020)

🛛 = 630.2 nm

VTT: First Full Disk Doppler map with HELLRIDE (25.08.2020)

Prototype

- Ongoing design work together with AMOS
- Deliverable: Optomechanical design study

One band between 510 nm and 680 nm covers 9 lines (of 17)

Timeline

- Optomechanical design is deliverable by end of WP8.1
- Further full disk experiments at VTT in summer 2021
- Next steps to plan:
 - Purchase a prototype etalon and test it at the VTT testbed
 - Test a full disk tiptilt sensor
 - Build a prototype telescope

