

Bayesian inference for cycles in noisy time series

Thinkshop 2016, Dübendorf

Carlo Albert

 $\bullet \bullet \bullet \bullet$

Fourier Analysis

- Problem: Peaks have a finite width, even for pure harmonics, due to the finite observation window -> significance?
- This resolution has nothing to do with the accuracy lines can be determined with!
- How to measure accuracy -> Bayesian statistics!

Bayesian Statistics

- Bayesian statistics conceptualises model-based learning from data and allows us to quantify knowledge of model parameters by means of probability distributions.
- We need prior knowledge in the form of
 - a parameterised stochastic model, for the data generating process, informed by our physical understanding of the system and/or analysis of the features of the data. Mathematically cast in the form of a likelihood function L(y|θ).
 - a probability distribution f_{prior}(θ), expressing our prior knowledge about the parameters of the model.
- Bayes' equation tells us how to update knowledge about parameters when new data becomes available, which is believed to be a realisation of the model:

$$f_{post}(\boldsymbol{\theta}|\mathbf{y}) = \frac{L(\mathbf{y}|\boldsymbol{\theta})f_{prior}(\boldsymbol{\theta})}{\int L(\mathbf{y}|\boldsymbol{\theta}')f_{prior}(\boldsymbol{\theta}')d\boldsymbol{\theta}'}$$

The Bretthorst Method

• Data generating model: Single harmonic(s) plus red noise (Palonen 2004),

 θ = period, phase and amplitude of harmonic(s) and amplitude of red background noise.

 Allows us to determine lines (periods of harmonics) with phenomenal accuracy!

$\nabla_{14}C$	88.1	104.3	148.8	208.7	348,4	503.7
	±	±	±	±	±	\pm
Planet.	0.2 86.5	0.2 103.9	0.4 148.1	1.1 208.5	2.2 350.0	5.3 507.0
Torque	±	±	±	±	±	\pm
	0.2	0.3	0.5	1.6	2.5	4.9
Diffe-	1.6	0,4	0.7	0.2	1.6	3.3
rence						

Outlook: More realistic models

1D iterative map model for solar dynamo (Durney 2000, Charbonneau 2001), derived from Babcock Leighton mechanism:

$$P_{n+1} = \alpha_n f(P_n) P_n + \epsilon_n$$

- P_n normalised amplitude of cycle n
- *α_n* multiplicative noise parameter
- *ɛ_n* additive noise parameter
- *f* nonlinear map modelling poloidal field production from the decay of active regions as a function of the deep-seated toroidal magnetic component
- Promising features:
 - period doubling (higher harmonics?)
 - intermittency (Maunder minima?)

Outlook: Hamiltonian Monte Carlo

 Bayesian inference with stochastic models requires calculating a (hugh-) dimensional integral over all possible model realisations that are compatible with the data (and the prior):

$$f_{post}(\boldsymbol{\theta}|\mathbf{y}) \propto \int \exp[-\mathcal{A}_{model}(\boldsymbol{\alpha}, \boldsymbol{\epsilon}) - \mathcal{A}_{data}(\boldsymbol{\alpha}, \boldsymbol{\epsilon}; \mathbf{y}) - \mathcal{A}_{prior}(\boldsymbol{\theta})] d\boldsymbol{\alpha} d\boldsymbol{\epsilon}$$

• Re-interpret this problem as a **statistical mechanics** problem (Albert, Ulzega, Stoop, PRE **93**, 2016):

Pair each degree of freedom, α , ε , and θ , with a conjugate momentum, add a Gaussian kinetic term to the action above, and generate parameter samples from the posterior via simulating the resulting Hamiltonian system.

$$f_{post}(\boldsymbol{\theta}|\mathbf{y}) \propto \int \exp[-\mathcal{H}_{\mathbf{y}}(\boldsymbol{\alpha}, \boldsymbol{\epsilon}, \boldsymbol{\theta}; \mathbf{p}_{\alpha}, \mathbf{p}_{\epsilon}, \mathbf{p}_{\theta})] d\boldsymbol{\alpha} d\boldsymbol{\epsilon} d\mathbf{p}_{\alpha} d\mathbf{p}_{\epsilon} d\mathbf{p}_{\theta}$$