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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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Table 1. Summary of Runs.

Run PrSGS Pr PrM Ta[108] Ra[107] Co Re

MHD 2.0 60 1 1.3 4.2 8.3 34
HD 2.0 60 – 1.3 4.2 8.2 34

Notes. Second to sixth columns: input parameters. Last two columns:
diagnostics computed from the saturated states of the simulations. The
Rayleigh number is around 100 times the critical value.

1. Introduction

Warnecke et al. (2014)

ωcycl/Ω ∝ Co−1/2 (1)

∂Ω

∂r
∝ Co2 (2)

ωcycl/Ω ∝ Co1/2 (3)

α2 dynamo

2. Model and setup

3. Results

3.1. Magnetic cycles

3.2. Cause of magnetic cycles

3.3. Comparison with observations

4. Conclusions
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Table 1. Summary of Runs.

Run δR PrSGS PrM Ta[1010] Ra[107] Co Re

I 0 2.5 1 1.4 2.0 7.8 35
II 0 0.5 0.5 1.5 0.3 12 24
III 0.1 2 1 1.5 3.8 9.1 31
IV 0.1 2 1 1.5 2.8 9.5 30

Notes. The second to sixth columns show quantities that are input pa-
rameters to the models, whereas the quantities in the last two columns
are computed from the saturated states of the simulations.

and magnetic field evolution (Warnecke et al. 2014). Even a sim-
ulation with PrSGS = 1 shows no qualitative difference to Runs I
and IV (Käpylä et al. 2015). However, in Run II, both Prandtl
numbers are reduced to PrSGS = PrM = 0.5, which leads to a
different differential rotation profile and poleward migration in-
stead of equatorward migration of the magnetic field (Warnecke
et al. 2014). Beside the four MHD simulations, we also perform
corresponding hydrodynamic (HD) simulations, which are indi-
cated by ‘h’.

Throughout this paper, we will invoke the mean-field ap-
proach, within which we decompose quantities such as B into
mean and fluctuating parts, B and B′ = B − B, respectively. We
define the mean as the azimuthal (i.e., φ) average. However, of-
ten we will use additional temporal or spatial averages denoted
as ⟨.⟩c, with c = t, r, θ. Using this, we also define the merid-

ional distribution of the turbulent velocity u′rms(r, θ) = ⟨u′ 2⟩t
1/2

taking all velocity components into account. When presenting
the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is
the mixing length parameter chosen to 5/3. Note here, that these
normalization quantities depend on radius and latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω⊙=5, where Ω⊙ = 2.7 × 10−6 s−1 is the solar rotation
rate and assuming the density at the base of the convection zone
(r = 0.7R⊙) to have the solar value ρ = 200 kg m−3; see more
details and discussion about the relation of the chosen kind of
simulation to real stars in Käpylä et al. (2013, 2014), Warnecke
et al. (2014) and Käpylä et al. (2015). The simulations were per-
formed with the Pencil Code1, which uses a high-order finite dif-
ference method for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (u × B + u′ × B′) − ∇ × η∇ × B, (1)

where

u′ × B′ = E (2)

1 http://github.com/pencil-code/

is the turbulent electromotive force arising from the correlation
of the fluctuating velocity and magnetic fields. Note that Equa-
tion (1) is an exact equation in MHD, where not any assumptions
have been made except that the average must obey the Reynolds
rules. At this stage, the azimuthal average does not require any
scale separation. The E can be expanded in terms of the mean
magnetic field B,

E = a · B + b · ∇B + . . . = Ea + Eb + . . . , (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, only for slowly varying mean
magnetic fields a proper representation of E by Eq. (3) can be ex-
pected. We emphasize that this is not a principal restriction and
that it has been relaxed in earlier applications of the test-field
method (Brandenburg 2008; Rheinhardt & Brandenburg 2012).
In Equation (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B

into symmetric and anti-symmetric parts, we can rewrite Equa-
tion (3) as

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(S ), (4)

where α is the symmetric part of a giving rise to the so-called α-
effect (Steenbeck et al. 1966), γi = −ϵi jka jk/2 characterizes the
anti-symmetric part of a and describes changes of the magnetic
field as it were frozen into the velocity γ (also: ‘turbulent pump-
ing’) (e.g. Ossendrijver et al. 2002), β is the symmetric part of
the rank two tensor acting upon ∇ × B, which characterizes the
turbulent diffusion, the vector δ quantifies its antisymmetric part
and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
a rank-three tensor, whose interpretation is still not fully under-
stood.

Calculating these transport coefficients will lead to an under-
standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
chosen test field BT,

∂B′

∂t
= ∇×

(

u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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where α is the symmetric part of a giving rise to the so-called α-
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the rank two tensor acting upon ∇ × B, which characterizes the
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and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
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standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
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= ∇×
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u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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Table 1. Summary of Runs.

Run δR PrSGS PrM Ta[1010] Ra[107] Co Re

I 0 2.5 1 1.4 2.0 7.8 35
II 0 0.5 0.5 1.5 0.3 12 24
III 0.1 2 1 1.5 3.8 9.1 31
IV 0.1 2 1 1.5 2.8 9.5 30

Notes. The second to sixth columns show quantities that are input pa-
rameters to the models, whereas the quantities in the last two columns
are computed from the saturated states of the simulations.

and magnetic field evolution (Warnecke et al. 2014). Even a sim-
ulation with PrSGS = 1 shows no qualitative difference to Runs I
and IV (Käpylä et al. 2015). However, in Run II, both Prandtl
numbers are reduced to PrSGS = PrM = 0.5, which leads to a
different differential rotation profile and poleward migration in-
stead of equatorward migration of the magnetic field (Warnecke
et al. 2014). Beside the four MHD simulations, we also perform
corresponding hydrodynamic (HD) simulations, which are indi-
cated by ‘h’.

Throughout this paper, we will invoke the mean-field ap-
proach, within which we decompose quantities such as B into
mean and fluctuating parts, B and B′ = B − B, respectively. We
define the mean as the azimuthal (i.e., φ) average. However, of-
ten we will use additional temporal or spatial averages denoted
as ⟨.⟩c, with c = t, r, θ. Using this, we also define the merid-

ional distribution of the turbulent velocity u′rms(r, θ) = ⟨u′ 2⟩t
1/2

taking all velocity components into account. When presenting
the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is
the mixing length parameter chosen to 5/3. Note here, that these
normalization quantities depend on radius and latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω⊙=5, where Ω⊙ = 2.7 × 10−6 s−1 is the solar rotation
rate and assuming the density at the base of the convection zone
(r = 0.7R⊙) to have the solar value ρ = 200 kg m−3; see more
details and discussion about the relation of the chosen kind of
simulation to real stars in Käpylä et al. (2013, 2014), Warnecke
et al. (2014) and Käpylä et al. (2015). The simulations were per-
formed with the Pencil Code1, which uses a high-order finite dif-
ference method for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (u × B + u′ × B′) − ∇ × η∇ × B, (1)

where

u′ × B′ = E (2)

1 http://github.com/pencil-code/

is the turbulent electromotive force arising from the correlation
of the fluctuating velocity and magnetic fields. Note that Equa-
tion (1) is an exact equation in MHD, where not any assumptions
have been made except that the average must obey the Reynolds
rules. At this stage, the azimuthal average does not require any
scale separation. The E can be expanded in terms of the mean
magnetic field B,

E = a · B + b · ∇B + . . . = Ea + Eb + . . . , (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, only for slowly varying mean
magnetic fields a proper representation of E by Eq. (3) can be ex-
pected. We emphasize that this is not a principal restriction and
that it has been relaxed in earlier applications of the test-field
method (Brandenburg 2008; Rheinhardt & Brandenburg 2012).
In Equation (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B

into symmetric and anti-symmetric parts, we can rewrite Equa-
tion (3) as

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(S ), (4)

where α is the symmetric part of a giving rise to the so-called α-
effect (Steenbeck et al. 1966), γi = −ϵi jka jk/2 characterizes the
anti-symmetric part of a and describes changes of the magnetic
field as it were frozen into the velocity γ (also: ‘turbulent pump-
ing’) (e.g. Ossendrijver et al. 2002), β is the symmetric part of
the rank two tensor acting upon ∇ × B, which characterizes the
turbulent diffusion, the vector δ quantifies its antisymmetric part
and enables what is known as the Rädler effect (Rädler 1969),
(∇B)(S ) is the symmetric part of the derivative tensor and κ is
a rank-three tensor, whose interpretation is still not fully under-
stood.

Calculating these transport coefficients will lead to an under-
standing which physical processes are responsible for the evo-
lution and generation of the mean magnetic field. The test-field
method (Schrinner et al. 2005, 2007, 2012) is one way to cal-
culate these coefficients from global dynamo simulations. For
computing E, we solve for the fluctuating magnetic field for a
chosen test field BT,

∂B′

∂t
= ∇×

(

u′ × BT + u × B′ + u′ × B′ − u′ × B′
)

−∇×η∇×B′.

(5)

This allows us then to calculate the E for every given BT by tak-
ing u and u′ from the global simulation. By choosing nine inde-
pendent vectorial test fields, we have sufficiently many realiza-
tions of Equation (3) to solve for all coefficients of Equation (4).
A detailed description and discussion, in particular for spherical
coordinates can be found in Schrinner et al. (2005, 2007).

The testfield method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations B′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulations considered, this cannot be ruled
out completely. We denote such fluctuations by B′0 and the cor-
responding velocity fluctuations by u′0 while those fluctuations
which vanish with the mean field shall be denoted by B′

B
and
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netic field evolution (Warnecke et al. 2016a). Even a simulation
with PrSGS = 1 as in Käpylä et al. (2016a) shows no significant
qualitative difference. The adopted Rayleigh number of 4.2×107

is around 100 times the critical value.
Throughout this paper, we will invoke the mean-field ap-

proach, within which we decompose quantities such as B and
u into mean and fluctuating parts, B and b′ = B − B as well as
U and u′ = u − U , respectively. We define the mean as the
azimuthal (i.e., φ) average. Thus, as is well known, dynamos
with azimuthal order m ≥ 1, as found in Cole et al. (2014),
cannot be described by such averaging. However, we will often
use additional temporal or spatial averages denoted as ⟨.⟩ξ, with
ξ = t, r, θ. One important quantity defined this way is the merid-
ional distribution of the turbulent velocity u′rms(r, θ) =

〈

u′ 2
〉

t

1/2

which takes all velocity components into account. When present-
ing the results, we often use a normalization for the transport co-
efficients motivated by the first-order-smoothing-approximation
(FOSA), employing α0 = u′rms/3 and ηt0 = τu

′ 2
rms/3 with an es-

timate of the convective turnover time τ = HpαMLT/u
′
rms, where

Hp = −(∂ ln p/∂r)−1 is the pressure scale height and αMLT is the
mixing length parameter chosen here to have the value 5/3. We
note that these normalization quantities depend on radius and
latitude.

The results below are either presented as normalized quanti-
ties or in physical units by choosing a normalized rotation rate
Ω̃ =Ω0/Ω⊙=5, where Ω⊙ = 2.7 × 10−6 s−1 is the solar rotation
rate, and assuming the density at the base of the convection zone
(r = 0.7R⊙) to have the solar value ρ = 200 kg m−3; see more de-
tails and discussion about the relation of the simulations to real
stars in Käpylä et al. (2013, 2014), Warnecke et al. (2014) and
Käpylä et al. (2016a). The simulations were performed with the
Pencil Code1, which uses a high-order finite difference method
for solving the compressible equations of MHD.

3. Test-field method

3.1. Theoretical background

We consider the induction equation in the mean-field approach

∂B

∂t
= ∇ × (U × B + u′ × b′) − ∇ × η∇ × B, (1)

where

u′ × b′ = E (2)

is the mean (or turbulent) electromotive force arising from the
correlation of the fluctuating velocity and magnetic fields. Note
that Eq. (1) is an exact equation in MHD, where no assumptions
have been made except that the average must obey the Reynolds
rules, which the azimuthal average does. At this stage no scale
separation is required. The E can be expanded in terms of the
mean magnetic field B,

E = a · B + b · ∇B + . . . (3)

where in the following we truncate the expansion after the first
order spatial derivatives of B and disregard any temporal deriva-
tives. This, however, does require scale separation, hence only
the effects of the magnetic field at the larger scales will be cap-
tured by this approach. Likewise, a proper representation of E

1 http://github.com/pencil-code/

by Eq. (3) can be expected only for slowly varying mean mag-
netic fields. We emphasize that this is not a principal restriction
and that it has been relaxed in earlier applications of the test-
field method (Brandenburg et al. 2008b; Hubbard & Branden-
burg 2009; Chatterjee et al. 2011; Rheinhardt & Brandenburg
2012). In Eq. (3), a and b are tensors of rank two and three, re-
spectively. Dividing these, as well as the derivative tensor ∇B
into symmetric and antisymmetric parts, we can rewrite Eq. (3)
as (neglecting higher order terms indicated by . . . )

E = α · B + γ × B − β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(s), (4)

where α is the symmetric part of a giving rise to the α effect
(Steenbeck et al. 1966), γi = −ϵi jka jk/2 characterizes the anti-
symmetric part of a and describes changes of the mean magnetic
field due to an effective velocity γ (also: ‘turbulent pumping’)
(e.g. Ossendrijver et al. 2002), β is the symmetric part of the
rank two tensor acting upon ∇ × B, which characterizes the tur-
bulent diffusion, δ quantifies its antisymmetric part and enables
what is known as the Rädler effect (Rädler 1969), (∇B)(s) is the
symmetric part of the derivative tensor and κ is a rank-three ten-
sor, whose interpretation has yet to be established. Detailed de-
scriptions of these tensors are provided in Sections 4.1, 4.3 and
4.4.

Calculating these transport coefficients will enable the iden-
tification of the physical processes which are responsible for the
evolution and generation of the mean magnetic field. The test-
field method (Schrinner et al. 2005, 2007, 2012) is one way to
calculate these coefficients from global dynamo simulations. To
compute E, we solve

∂b′T
∂t
=∇ ×

(

u′ × BT +U × b′T + u′ × b′T − u′ × b′T

)

− ∇ × η∇ × b′T

(5)

for b′T with a chosen test field BT, while taking U and u′ from
the global simulation (the “main run"), and employ Eq. (2). By
choosing nine linearly independent test fields, we have suffi-
ciently many realizations of Eq. (3) to solve for all coefficients
of Eq. (4). A detailed description and discussion, in particular
for spherical coordinates can be found in Schrinner et al. (2005,
2007).

The test-field method in the presented form is only valid in
the absence of a “primary magnetic turbulence”, that is, if the
magnetic fluctuations b′ vanish for B ≡ 0. However, for suffi-
ciently high magnetic Reynolds numbers a small-scale dynamo
may exist which creates magnetic fluctuations also in the ab-
sence of B. For the simulation considered here, this can be ruled
out: a test run, where B has been removed in each time step
shows no magnetic field growth.

3.2. Implementation

The implementation of the test-field method follows the lines
described in Schrinner et al. (2005, 2007): The nine test fields
were specified such that each has only one non-vanishing spher-
ical component and is either constant or depends linearly on r or
θ, see Table 1 of Schrinner et al. (2007). Note that some of these
fields are not solenoidal or become irregular at the axis, and that
none of them obeys the boundary conditions posed in the main
run, but these properties have been shown by the same authors
not to exclude the suitability of such fields. Clearly, they form
a linearly independent function system. The nine test problems,
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Fig. 2. Time-averaged kinetic and magnetic α coefficients, αK, αM, nor-
malized by α0 = u′rms/3, and normalized differential rotation Ω/Ω0 for
Run I.

the mean density. For a direct comparison we plot the latitudinal
profiles of the diagonal components of α together with αK and
αK+αM in Figure 3.

αrr is by far the strongest of all components of α, in par-
ticular in concentrations near the surface at low latitudes. The
same has been found previously for Cartesian shear flows us-
ing both multidimensional regression methods (Brandenburg &
Sokoloff 2002; Kowal et al. 2006) as well as the test-field method
(Brandenburg 2005). Unfortunately, a comparison with Käpylä
et al. (2009), where the transport coefficients for convection in a
Cartesian box have been obtained by the testfield method, is not
possible with respect to αrr as it was not determined there. In the
middle of the convection zone αrr is much weaker than above
and below; but the values are still high compared to the other
components of α. The latitudinal dependency shows strong de-
cay from low to high latitudes. The coefficient αθθ is around 6
and 2 times weaker than αrr and αφφ, respectively, and shows
multiple sign reversals on cylindrical contours. A region of neg-
ative (positive) αθθ in the northern (southern) hemisphere coin-
cides with a local minimum of the local rotation rate Ω(r, θ) =
Ω0 + uφ/r sin θ as seen in Figure 3 of Warnecke et al. (2014) and
a maximum of negative latitudinal shear (dΩ/dθ < 0), see up-
per left panel of Figure 5. Further, αφφ shows concentrations at
low and mid to high latitudes near the surface, but also inside
the tangent cylinder, where the sign is reversed. The sign rever-
sal with depth is most pronounced in αφφ, but also visible in αθθ.
The meridional profile of αφφ is overall similar to that of αK,
even though the strength is around 4 times smaller, see also Fig-
ure 13 and the related discussion in Section 4.7. As indicated in
Figure 3, the latitudinal dependency of αφφ as well as of αK does
not follow a typical cos or cos2 distribution as found by, e.g.,
Käpylä et al. (2006) for moderate rotation. However, beside the
lower amplitude, αφφ follows roughly the latitudinal dependency
of αK. Therefore, the main reason for the mismatch of αφφ with a
cosine dependency (at surface) seems to be due to the mismatch
of the kinetic helicity with a cos profile.

The non-diagonal components of α have similar strengths
as αθθ and are therefore significantly weaker than αrr and αφφ.
Among the three off-diagonal components, αrθ and αθφ have a
similar meridional symmetric profile with mostly positive values
in the upper ! 75% of the convection zone, in particular below
mid-latitudes. Finally, αrφ is with its anti-symmetric profile sim-

Fig. 3. Time-averaged main-diagonal components of α (a-c) together
withαK, αK+αM (d) and the n P of αrr (see Eq. (9)) (e) over latitude
90◦ − θ in the northern hemisphere of Run I and for three different radii:
r = 0.98 R (black), r = 0.84 R (red), r = 0.72 R (blue). The solid and
dashed lines in the (d) indicate αK and αK + αM, respectively. In (a)
we overplot 2 cos θ and 2 cos2 θ with dashed and dotted-dashed lines,
respectively. Values in (a)-(d) are normalized by α0 = u′rms/3.

ilar to αθθ, but the sign reversal in the region of minimum Ω is
more pronounced and at high latitudes the sign is the opposite.

Already inspection by eye suggests that the components of α
are almost fully symmetric or anti-symmetric, respectively 2. In
order to study the symmetry properties of the components with
respect to the equator quantitatively we define the pointwise par-
ity of its components as

P(αi j) =

(

αes
i j

)2
−
(

αea
i j

)2

(

αes
i j

)2
+
(

αea
i j

)2 , (9)

2 For the special solutions of the full MHD problem, given by equato-
rially symmetric velocity, density and entropy with an either symmetric
or antisymmetric magnetic field, it can be shown that the main diago-
nal components of α, as well as αrφ and γθ are antisymmetric, the other
components symmetric.
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2, and A1pc (top row), Runs A2, A3, A3t, and A4 (middle row), and Runs B1, B1c, B3, and B3t
(bottom row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut
at lower values than in the other runs.

toroidal field evolution. The field is weaker in the band near the
equator than in the other runs and the equatorward migration
near the poles is more pronounced. The periods of the cyclic
poleward migrating field near the equator in Runs A2, A3, and
A4 are around 2 years, which is shorter than in the Runs A1 and
A1c2, where it is around 7 years (Warnecke et al. 2014). The
equatorward branch near the poles seems to appear only every
second poleward cycle in Runs A2, A3, and A4. In Run A3t, the
magnetic field near the equator does not show a regular behavior
with a clear cycle. The field has bands of time-constant magnetic
fields, which are interrupted at certain times by the field chang-
ing polarity and migrating poleward. The equatorward branch
near the poles has a period of around 2 years, which is similar to
the period of the poleward branch of Runs A2, A3, and A4. In the
time-radius diagrams of the middle row of Figure 16, the similar
cycle periods of Runs A2, A3 and A4 are clearly seen. The max-
imum of the magnetic field strengths in all runs of Set A, which
have a coronal envelope, is situated near the surface (r = R).
However, it seems as if their origin lies deeper, in the middle
of the convection zone. There the magnetic field cycle appears
earlier than near the surface. This connection to the middle part
of the convection zone is less pronounced in Runs A3t and A4.
However, in Run A4, the field is also strong in the middle of the
convection zone and oscillating with the same period as the one
at the surface.

In the case of slower rotating convective dynamos (Set B),
the magnetic field evolution changes, but shows a similar depen-
dence on the cooling profile and the coronal envelope; see the

last rows of Figures 15 and 16. In Run B1 the magnetic field
shows indications of equatorward migration, in particular in the
southern hemisphere; see Figure 15. The field evolution is sim-
ilar to that of Run A1, but due to the slower rotation, the cy-
cle period is extended to around 10 years. Beside the indication
of equatorward migration, there also exist a poleward branch at
high latitudes, which is in phase with the equatorward branch. A
cooling layer, which causes the temperature minimum to be be-
low the surface as in Run A1c, also affects the evolution of mag-
netic field for slower rotation; see Run B1c in Figures 15 and 16.
Similar to Run A1c, the field becomes quasi-steady leading to
bands of the same polarity in the saturated stage. On top of this
dynamo mode, there is a rapidly oscillating dynamo mode near
the equator, similar to Run A1c. Using the same cooling layer
as in Run A1c with a coronal envelope (Run B3t), the poleward
branch near the equator becomes more pronounced and the pe-
riod longer. The period is comparable with the poleward branch
in Runs A2, A3, and A4, even though their rotation is 5/3 times
higher. In contrast to these runs, there is no indication of equator-
ward migration at high latitudes, and the magnetic field develops
into a quasi-steady state of bands of fields, similar to Runs A1c
and B1. If we apply the same cooling profile as in Runs A1c2
and A3t, the magnetic field evolution changes; see Run B3t in
Figure 15. The dynamo generates a weak equatorward branch
near high latitudes, similar to Run A3t, but with weaker fields.
Near the equator, the magnetic field is statistically stationary and
concentrates in bands around ± 30 latitude, negative (positive)
in the northern (southern) hemisphere. In the time-radius dia-
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Fig. 7. Meridional circulation in terms of the mass flux ρum for Runs A1
and A1c (top row), Runs A3 and A3t (middle row), as well as Runs B1
and B3t (bottom row). The dashed lines indicate the surface (r = R) and
the red solid line the tangent cylinder.

around −0.2 near the surface for Run A4, and−0.15 for Runs A2,
A3, and A3t. This is much less than the value for the Sun, which
is d lnΩ/d ln r ≈ −1 for all latitudes (Barekat et al. 2014). All
runs of Set B, except B1c, show negative shear near the surface
at the equator. This near-surface shear region is more extended
than the ones in Set A, and the gradient is stronger; d lnΩ/d ln r
reaches values of −0.8 for Run B3 and −0.5 for Run B3t. It is
expected that for runs with lower rotation rate, a near-surface

shear layer is stronger due to the weaker influence of the Corio-
lis force near the surface; see Section 3.3. In agreement with Λ
effect theory (Rüdiger 1980, 1989), the double-logarithmic gra-
dient should only be close to −1 very near the surface where
the local Coriolis number is small (Kitchatinov & Rüdiger 2005;
Kitchatinov 2013; Rüdiger et al. 2014) While this is true for the
Sun, it is unfortunately not fully the case in our simulations ow-
ing to limited stratification.

To investigate the influence of the cooling profile on the tem-
perature variation and differential rotation, we have increased
and lowered the cooling luminosity, or the cooling time, respec-
tively for Run A1c2. A decrease of the cooling luminosity by a
factor of 2 results in a shift of the temperature minimum to higher
regions in the atmosphere. The convection adjusts and the mean
temperature increases slightly, resulting in a slightly higher den-
sity at the surface and a decrease of the density stratification in
the convection zone. An increase of the cooling luminosity leads
to a temperature minimum at a greater depth, and a lower tem-
perature and density in the convection zone. Temperature varia-
tions similar as in Figure 4 are as expected stronger with a lower
cooling luminosity, but a stronger cooling (by a factor 2) does
not lead to a decrease on temperature perturbations. The differ-
ential rotation reacts in a similar matter; less cooling leads to
more rapid rotation, especially at higher latitudes, and a stronger
cooling does not show any strong effect on the rotation. The gra-
dient d lnΩ/d ln r at the equator becomes more negative with a
weaker cooling.

Differential rotation is also generated in the coronal en-
velopes. Near the equator the plasma rotates nearly uniformly
with a rotational speed close the Ω0. The mid-latitudes rotate
faster than the equator and at high latitudes the coronal envelops
decrease to slower rotation. This is consistent with Warnecke
et al. (2013a), where runs with lower stratification show a simi-
lar behavior.

In Figure 7 we plot the meridional circulation in terms of the
mass flux ρum in the meridional plane, where um = (ur, uθ, 0) is
the meridional flow. The meridional circulation has in all runs a
multi-cellular structure. Near the equator at the surface the flow
is poleward, but it can become equatorward at high latitudes;
see Figure 7. The strongest contribution to the mass flux car-
ried by the meridional circulation occurs within the bulk of the
convection zone. There the flow is aligned with the rotation axis
and streaming toward the equator along the inner tangent cylin-
der and toward higher latitudes further away from the rotation
axis. These mass flows seem to stream toward the local minima
of Ω at mid-latitudes. From there, most of the runs develop a
flow toward the equator following the θ direction. The stronger
meridional flows in Run A1 are due to the higher density, see
Figure 1(b), while the actual flow is quite similar in all runs
of Set A, see Figure 9(h). The runs of Set B generate stronger
meridional circulation, similarly to what was found in Warnecke
et al. (2013a). At these rotation rates, slower rotation leads to an
increase of meridional circulation as found in mean-field mod-
els (Köhler 1970; Rüdiger 1989) and numerical simulations (e.g.
Brown et al. 2008; Augustson et al. 2012). In general the merid-
ional flow pattern does not change due to the influence of the
coronal envelope.

3.3. Reynolds stresses and Λ effect

Differential rotation and meridional circulation in the Sun and
other stars is generated by the interaction of turbulent convec-
tion and rotation (Rüdiger 1989). Reynolds stresses become
anisotropic due to an angle between the gravity and the axis
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Fig. 2. Time-averaged kinetic and magnetic α coefficients, αK, αM, nor-
malized by α0 = u′rms/3, and normalized differential rotation Ω/Ω0 for
Run I.

the mean density. For a direct comparison we plot the latitudinal
profiles of the diagonal components of α together with αK and
αK+αM in Figure 3.

αrr is by far the strongest of all components of α, in par-
ticular in concentrations near the surface at low latitudes. The
same has been found previously for Cartesian shear flows us-
ing both multidimensional regression methods (Brandenburg &
Sokoloff 2002; Kowal et al. 2006) as well as the test-field method
(Brandenburg 2005). Unfortunately, a comparison with Käpylä
et al. (2009), where the transport coefficients for convection in a
Cartesian box have been obtained by the testfield method, is not
possible with respect to αrr as it was not determined there. In the
middle of the convection zone αrr is much weaker than above
and below; but the values are still high compared to the other
components of α. The latitudinal dependency shows strong de-
cay from low to high latitudes. The coefficient αθθ is around 6
and 2 times weaker than αrr and αφφ, respectively, and shows
multiple sign reversals on cylindrical contours. A region of neg-
ative (positive) αθθ in the northern (southern) hemisphere coin-
cides with a local minimum of the local rotation rate Ω(r, θ) =
Ω0 + uφ/r sin θ as seen in Figure 3 of Warnecke et al. (2014) and
a maximum of negative latitudinal shear (dΩ/dθ < 0), see up-
per left panel of Figure 5. Further, αφφ shows concentrations at
low and mid to high latitudes near the surface, but also inside
the tangent cylinder, where the sign is reversed. The sign rever-
sal with depth is most pronounced in αφφ, but also visible in αθθ.
The meridional profile of αφφ is overall similar to that of αK,
even though the strength is around 4 times smaller, see also Fig-
ure 13 and the related discussion in Section 4.7. As indicated in
Figure 3, the latitudinal dependency of αφφ as well as of αK does
not follow a typical cos or cos2 distribution as found by, e.g.,
Käpylä et al. (2006) for moderate rotation. However, beside the
lower amplitude, αφφ follows roughly the latitudinal dependency
of αK. Therefore, the main reason for the mismatch of αφφ with a
cosine dependency (at surface) seems to be due to the mismatch
of the kinetic helicity with a cos profile.

The non-diagonal components of α have similar strengths
as αθθ and are therefore significantly weaker than αrr and αφφ.
Among the three off-diagonal components, αrθ and αθφ have a
similar meridional symmetric profile with mostly positive values
in the upper ! 75% of the convection zone, in particular below
mid-latitudes. Finally, αrφ is with its anti-symmetric profile sim-

Fig. 3. Time-averaged main-diagonal components of α (a-c) together
withαK, αK+αM (d) and the n P of αrr (see Eq. (9)) (e) over latitude
90◦ − θ in the northern hemisphere of Run I and for three different radii:
r = 0.98 R (black), r = 0.84 R (red), r = 0.72 R (blue). The solid and
dashed lines in the (d) indicate αK and αK + αM, respectively. In (a)
we overplot 2 cos θ and 2 cos2 θ with dashed and dotted-dashed lines,
respectively. Values in (a)-(d) are normalized by α0 = u′rms/3.

ilar to αθθ, but the sign reversal in the region of minimum Ω is
more pronounced and at high latitudes the sign is the opposite.

Already inspection by eye suggests that the components of α
are almost fully symmetric or anti-symmetric, respectively 2. In
order to study the symmetry properties of the components with
respect to the equator quantitatively we define the pointwise par-
ity of its components as

P(αi j) =

(

αes
i j

)2
−
(

αea
i j

)2

(

αes
i j

)2
+
(

αea
i j

)2 , (9)

2 For the special solutions of the full MHD problem, given by equato-
rially symmetric velocity, density and entropy with an either symmetric
or antisymmetric magnetic field, it can be shown that the main diago-
nal components of α, as well as αrφ and γθ are antisymmetric, the other
components symmetric.
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in the non-covariant relation

Eµ = ãµλBλ + b̃µλr
∂Bλ

∂r
+ b̃µλθ

1
r

∂Bλ

∂θ
, λ = r, θ, φ. (6)

we filter out the initial, transient epochs and those contaminated
by the unstable eigensolutions, and perform a reliability check
of statistical (quasi-) stationarity. The (covariant) coefficient ten-
sors in Eq. (4) are then obtained from the non-covariant ones
employing the relations (18) of Schrinner et al. (2007). Note that
their sign conventions for α and γ are different from ours.

4. Results

In Sections 4.1–4.4 we focus on the analysis of the time-
averaged transport coefficients while in Sections 4.5 and 4.6 we
investigate their magnetic quenching and cyclic variation due to
the mean magnetic field. In Section 4.7 we discuss the mean
magnetic field propagation by applying a similar technique as
in Warnecke et al. (2014). Finally, in Section 4.8 we compare
the results from the test-field method with results obtained from
the multidimensional regression method used by Brandenburg &
Sokoloff (2002) and later by e.g., Racine et al. (2011) and Au-
gustson et al. (2015).

4.1. Meridional profiles of α

In Fig. 1 we plot the time averages of all components of α. All
three diagonal components of α are mainly positive in the north
and negative in the south, but have a sign reversal in the lower
layers of the convection zone (except αrr). This behavior is sim-
ilar to that of α for isotropic and homogeneous turbulence in the
low-dissipation limit (Pouquet et al. 1976) via

α = −
τ

3

(

ω′ · u′ − j′ · b′/ρ
)

≡ αK + αM, (7)

where αK is the kinetic and αM the magnetic α coefficient, ω′ =
∇ × u′ is the fluctuating vorticity, resulting in the small-scale
kinetic helicity ω′ · u′, j′ = ∇ × b′/µ0 is the fluctuating current
density resulting in the small-scale current helicity j′ · b′ and ρ is
the mean density. For a direct comparison we plot the meridional
distribution of αK and αM in Fig. 1 as well as the latitudinal
profiles of the diagonal components of α together with those of
αK and αK+αM at three different depths in Fig. 2.

It turns out that αrr is the strongest of all components of α, in
particular in concentrations near the surface at low latitudes, see
Figs. 1 and 2. The same has been found previously for Carte-
sian shear flows using both multidimensional regression meth-
ods (Brandenburg & Sokoloff 2002; Kowal et al. 2006) as well
as the test-field method (Brandenburg 2005b). Unfortunately, a
comparison with Käpylä et al. (2009), where transport coeffi-
cients for convection in a Cartesian box have been obtained by
the test-field method, is not possible as αrr was not determined
there. In the middle of the convection zone, αrr is much weaker
than above and below; but compared to the other components of
α the values are still high or similar (αφφ). The latitudinal depen-
dency shows a steep decrease from low to high latitudes.

Next, αθθ is around six and two times weaker than αrr and
αφφ, respectively, and shows multiple sign reversals on cylin-
drical contours, see Fig. 1. A region of negative (positive) αθθ
at mid-latitudes in the northern (southern) hemisphere coin-
cides with a local minimum of the rotation rate Ω(r, θ) = Ω0 +

⟨Uφ⟩t/r sin θ as seen in Fig. 1 and a maximum of negative radial

Fig. 1. Components of α and αK,M normalized by α0 = u′rms/3 and nor-
malized differential rotationΩ/Ω0; all quantities are time averaged. Nu-
merals at the bottom right at each panel: overall parity P̃, see Eq. (8).

and latitudinal shear (∂rΩ < 0, ∂θΩ < 0), see bottom row of
Fig. 3.

Further, αφφ shows concentrations at low and mid to high lat-
itudes near the surface, but also in deeper layers, where its sign
is opposite to that near the surface. This sign reversal with depth
is most pronounced in αφφ, but also visible in αθθ. The merid-
ional profile of αφφ is roughly similar to that of αK, although its
strength is smaller, see Figs. 1 and 2. The latitudinal dependen-
cies of αφφ and αK do neither follow a typical cosine distribution
as found by, e.g., Käpylä et al. (2006a) for moderate rotation nor
a sin θ cos θ distribution as often assumed in Babcock-Leighton
dynamo models (e.g. Dikpati & Charbonneau 1999). In Käpylä
et al. (2009), an increase of the diagonal coefficients of α from
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Fig. 2. Time-averaged main-diagonal components of α (a-c) together
with αK, αK+αM (d) and the parity P(αrr) (see Eq. (8)) (e) over lati-
tude 90◦ − θ in the northern hemisphere and for three different radii:
r = 0.98 R (black), r = 0.84 R (red), r = 0.72 R (blue). Solid and dashed
lines in (d): αK and αK + αM, respectively. Values in (a)-(d) are normal-
ized by α0 = u′rms/3.

the equator to the poles was found, but the functional form is not
clear.

The off-diagonal components of α have similar strengths as
αθθ and are therefore significantly weaker than αrr and αφφ. αrθ

and αθφ have similar equatorially symmetric profiles with mostly
positive values in the upper ! 75% of the convection zone, in
particular below mid-latitudes. Finally, αrφ is similar to αθθ, but
the sign reversal in the region of minimum Ω at mid-latitudes is
more pronounced and at high latitudes the sign is opposite.

Already inspection by eye suggests that the components of α
and γ are almost fully equatorially symmetric or antisymmetric2.
In order to study these symmetries quantitatively we define the

2 For the special solutions of the full MHD problem in a model with
only r dependent coefficients, given by equatorially symmetric velocity,
density and entropy with an either symmetric or antisymmetric mag-
netic field, it can be shown that the main diagonal components of α, as
well as αrφ and γθ are antisymmetric, all other components symmetric.

pointwise parity of a quantity, e.g. αi j, as

P(αi j) =

(

αs
i j

)2
−
(

αa
i j

)2

(

αs
i j

)2
+
(

αa
i j

)2 , (8)

where αs,a
i j (r, θ) = 1

2

[

⟨αi j(r, θ)⟩t ± ⟨αi j(r, π − θ)⟩t
]

are the equa-
torially symmetric and antisymmetric parts of αi j, respectively.
In the bottom panel of Fig. 2, we exemplarily plot P(αrr). As
expected, its value is in most of the meridional plane −1, cor-
responding to antisymmetry. This is in particular valid near the
surface (black line). The locations, where the parity is different
coincide with values of αrr being close to zero, and are of low
significance. All other α components show the same small de-
viations from the pure parity state P(αrθ) = P(αθφ) = 1 and
P(αθθ) = P(αφφ) = P(αrφ) = −1. To describe the overall parity
of a coefficient by a single number P̃ we also employed Eq. (8)
with additional volume integrations in numerator and denomi-
nator, see Figs. 1, 4, 7, 9, and 16 for these values. For α we
have |P̃| ! 0.99 which is consistent with the almost pure over-
all equatorial symmetry of the velocity field: P̃(Ur) = 0.99,
P̃(Uθ) = −0.99, P̃(Uφ) = 1.00 and P̃(u′rms) = 1.003.

4.2. Magnetic field generators

To investigate the relative importance of the main contributions
to mean magnetic field evolution in detail, we plot those from the
Ω and α effects as well as from the turbulent diffusion in Fig. 3
along with the components of B and the shear. Contributions
from the meridional circulation have turned out to be signifi-
cantly weaker, see the dynamo number calculations in Käpylä
et al. (2013) and Käpylä et al. (2016a). We also do not show
the contribution related to γ, δ or κ. Here, α, β and shear have
been time-averaged over all cycles in the saturated stage. For
B we first constructed a typical magnetic cycle by folding all
magnetic cycles on top of each other and averaging. Then we
selected the instant at the half of an activity cycle with positive
toroidal magnetic field near the surface at low latitudes and used
the corresponding B for the calculations.

We employ here the poloidal-toroidal decomposition of the
mean magnetic field with Bpol = Brêr + Bθêθ, Btor = Bφêφ and
êi being the unit vector in the direction i. The Ω effect shears the
mean poloidal field, generating mean toroidal field via Bpol ·∇Ω
(top row of Fig. 3). At mid latitudes we find two distinct contri-
butions: Outside the tangent cylinder 4 the negative radial shear
(see bottom row of Fig. 3) generates a negative toroidal field
from the positive radial field. Further away from the tangent
cylinder the sign of the radial shear changes and it produces pos-
itive toroidal field. These two regions of field production coin-
cide well with those of strong Btor as shown in the middle row of
Fig. 3. Inside the tangent cylinder, the positive latitudinal shear
generates again positive toroidal field, but weaker than the ra-
dial shear does, and we find a corresponding region of positive
toroidal field. Beside these pronounced regions, there is also neg-
ative toroidal field production near the surface due to radial shear
at high latitudes and due to latitudinal shear at low latitudes.

3 Note that the symmetric (antisymmetric) part of a vector field V is
constituted by the symmetric (antisymmetric) parts of Vr,φ, but the anti-
symmetric (symmetric) part of Vθ.
4 The cylinder aligned with the rotation axis and tangent to the sphere
bounding the domain from below.
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Fig. 11. Quenching of transport coefficients shown as 2D histograms of αrr (a), γr (b), βrr (c), αφφ (d), γθ (e), βφφ (f), normalized by their time
averages, over the normalized energy density of the mean field B2/B2

eq. Data taken from the entire domain and the whole saturated stage. Red
and yellow lines: mean and median, respectively; blue contours: margins of range, in which 50% of the values lay. Green line: ∼ 1/

(

1 + B 2/B2
eq
)

.
Inlays: average and median in log-log scale for zoomed-in range; dotted and dashed green: ∼ 1/

(

1 + B 3/B3
eq
)

and ∼ 1/
(

1 + B 4/B4
eq
)

, respectively.

be divided into a constant (= time-averaged) part and a part with
temporal average zero, called variation (indicated by superscript
v), such as

α = ⟨α⟩t + α
v. (10)

In Fig. 12, we plot the variations of the diagonal components
of α and β, along with γ, δ and the corresponding toroidal and
radial mean field for a typical cycle, the definition and computa-
tion of which was described in Section 4.2. All coefficients show
clear cyclic variations with the activity cycle period (= half the
magnetic cycle period), owed to the quadratic effect of the mean
field on the velocity fluctuations. In many cases this is best visi-
ble at high latitudes. αθθ, γr, γθ and δφ seem to be predominantly
quenched by the toroidal field, while αrr, γφ, δr and the shown
components of β seem to be predominantly quenched by the ra-
dial field as indicated by the pattern at high latitudes. At lower
latitudes, the variations exhibit time scales shorter than the ac-
tivity cycle, which cause a noisy signal when folding the cycles.
The fast poleward migrating constituent of Bφ near the surface at
low latitudes (ghosts of which are visible in Fig. 12), discussed
in Warnecke et al. (2014) and Käpylä et al. (2016a), is one can-
didate for causing such a signal. As discussed in Käpylä et al.
(2016a) for a similar run, this high-frequency dynamo mode is
highly incoherent over time, i.e. cycle length and phase change

on short time scales, which can well be the cause of the noisy
appearance when averaged over several cycles.

To quantify the variations further, we plot in Fig. 13 their rms
values, defined as

αV
i j =

√

⟨αv 2
i j ⟩t , etc. (11)

For all shown coefficients these are stronger at low than at higher
latitudes. Near the surface (r = 0.98) the variations have their
maxima around ±(10 . . . 15)◦ latitude. This distribution indicates
a strong influence of the mentioned poleward migrating high fre-
quency constituent. However, in the middle of the convection
zone (r = 0.84) the maxima are around the equator, where the
high frequency constituent is not present (Käpylä et al. 2016a).
In addition, at mid to high latitudes the variations show also sig-
nificant values. The variations of αii and γi are roughly equal to
their time averages near the surface, but significantly bigger in
the middle of the convection zone near the equator. Furthermore,
βV

rr and βV
θθ are significantly stronger than ⟨βrr⟩t and ⟨βθθ⟩t, re-

spectively, but βV
φφ is only about one half of ⟨βφφ⟩t. The variations

of the δi also exceed their time-averages by several times. Thus,
given that the relative cyclic variations in the mean flows are at
most around 10% (see the discussion in Käpylä et al. (2016a)),
we may conclude that the back-reaction of the mean field onto
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Fig. 13. Latitudinal distribution of rms variations of transport coeffi-
cients αV

ii , γ
V
i , βV

ii and δV
i at r = 0.98 R (solid) and r = 0.84 R (dashed).

the terms generating it is predominately via the variation of the
transport coefficients.

4.7. Magnetic field propagation

As discussed in Warnecke et al. (2014), the occurrence of the
equatorward propagating magnetic field found in Käpylä et al.
(2012) can be well explained by the Parker-Yoshimura rule
(Parker 1955; Yoshimura 1975) using αK + αM as the relevant
scalar α. For the rule to be applicable, the Ω effect must be dom-
inant over the toroidal α effect, and the poloidal α effect must be
expressible with a single (possibly position-dependent) scalar by
∇×(αBφêφ). Having now all transport coefficients at hand allows
us to investigate why the Parker-Yoshimura rule provides such
a good description. To show this, we focus on the mid-latitude
region where the shear is negative, causing the generation of
equatorward migrating toroidal field Btor. There, as discussed
in Section 4.2, the radial Ω effect dominates the generation of
the toroidal field. So the radial component is the important part
of the poloidal field in the dynamo wave. In Fig. 15(a) we plot
the main contributions to the radial alpha effectA, namedAr,θ,φ

(the latitudinal alpha effect shows an similar behaviour). Obvi-
ously, the one related to αφφ (Aφ, red line) is indeed dominant
in the region where the toroidal field and the negative shear are
strong. Consequently, we now use αφφ to determine the equator-
ward propagation direction:

ξmig(r, θ) = −αφφêφ × ∇Ω (12)

Fig. 14. Latitudinal distribution of rms variations of transport coeffi-
cients αVM

ii , γVM
i , βVM

ii and δVM
i at r = 0.98 R (solid) and r = 0.84 R

(dashed).

and find indeed the correct prediction as shown in Fig. 15(b). 7

Using αK + αM instead of αφφ works for this run only by chance
as their signs are the same in the region of interest. However,
in general the Parker-Yoshimura rule using αφφ will not always
work as other components of α may give more important contri-
butions.

4.8. Comparison with multidimensional regression method

In Brandenburg & Sokoloff (2002), a method for determining the
transport coefficients has been used which is based on the tem-
porally varying mean magnetic field of the dynamo (the main
run) alone (called BS method in the following). Instead of solv-
ing additional test problems with predefined mean fields as de-
scribed in Section 3, the method exploits the fact that at differ-
ent times B at a given position has in general different direc-
tions. So using sufficiently many time instants, the underdeter-
mination of Eq. (6) can be overcome. One can go further and
employ any available instant ending up with a (usually heav-
ily) overdetermined system which can be solved approximately
by the least-squares technique or singular value decomposition.
An intrinsic problem emerges when B reaches dynamically rel-
evant strengths: Then the transport coefficients become depen-
dent on B and would be determined in a temporally averaged
sense where, however, it remains unclear to which strength of
B their values correspond. Clearly, the BS method does not al-

7 The rule does not exclude dynamo waves propagating along direc-
tions inclined w.r.t the isocontours of Ω. The highest growth rate, how-
ever, occurs for aligned propagation. Note that in the saturated nonlinear
stage a kinematically subdominant mode may nevertheless be prevalent.
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Fig. 12. Average cycle dependency of selected transport coefficients. Mean azimuthal and radial magnetic field, Bφ,r (top), together with the
temporal variation of the diagonal components of α along with γ (left) as well as the diagonal components of β along with δ (right) near the
surface (r = 0.98 R) on θ-t plane. The data is obtained from a typical cycle, see Section 4.2. The coefficients are symmetrized according to their
theoretical parity for a perfectly equatorially symmetric flow. The color scales are normalized to highlight the patterns.
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Fig. 11. Quenching of transport coefficients shown as 2D histograms of αrr (a), γr (b), βrr (c), αφφ (d), γθ (e), βφφ (f), normalized by their time
averages, over the normalized energy density of the mean field B2/B2

eq. Data taken from the entire domain and the whole saturated stage. Red
and yellow lines: mean and median, respectively; blue contours: margins of range, in which 50% of the values lay. Green line: ∼ 1/

(

1 + B 2/B2
eq
)

.
Inlays: average and median in log-log scale for zoomed-in range; dotted and dashed green: ∼ 1/

(

1 + B 3/B3
eq
)

and ∼ 1/
(

1 + B 4/B4
eq
)

, respectively.

be divided into a constant (= time-averaged) part and a part with
temporal average zero, called variation (indicated by superscript
v), such as

α = ⟨α⟩t + α
v. (10)

In Fig. 12, we plot the variations of the diagonal components
of α and β, along with γ, δ and the corresponding toroidal and
radial mean field for a typical cycle, the definition and computa-
tion of which was described in Section 4.2. All coefficients show
clear cyclic variations with the activity cycle period (= half the
magnetic cycle period), owed to the quadratic effect of the mean
field on the velocity fluctuations. In many cases this is best visi-
ble at high latitudes. αθθ, γr, γθ and δφ seem to be predominantly
quenched by the toroidal field, while αrr, γφ, δr and the shown
components of β seem to be predominantly quenched by the ra-
dial field as indicated by the pattern at high latitudes. At lower
latitudes, the variations exhibit time scales shorter than the ac-
tivity cycle, which cause a noisy signal when folding the cycles.
The fast poleward migrating constituent of Bφ near the surface at
low latitudes (ghosts of which are visible in Fig. 12), discussed
in Warnecke et al. (2014) and Käpylä et al. (2016a), is one can-
didate for causing such a signal. As discussed in Käpylä et al.
(2016a) for a similar run, this high-frequency dynamo mode is
highly incoherent over time, i.e. cycle length and phase change

on short time scales, which can well be the cause of the noisy
appearance when averaged over several cycles.

To quantify the variations further, we plot in Fig. 13 their rms
values, defined as

αV
i j =

√

⟨αv 2
i j ⟩t , etc. (11)

For all shown coefficients these are stronger at low than at higher
latitudes. Near the surface (r = 0.98) the variations have their
maxima around ±(10 . . . 15)◦ latitude. This distribution indicates
a strong influence of the mentioned poleward migrating high fre-
quency constituent. However, in the middle of the convection
zone (r = 0.84) the maxima are around the equator, where the
high frequency constituent is not present (Käpylä et al. 2016a).
In addition, at mid to high latitudes the variations show also sig-
nificant values. The variations of αii and γi are roughly equal to
their time averages near the surface, but significantly bigger in
the middle of the convection zone near the equator. Furthermore,
βV

rr and βV
θθ are significantly stronger than ⟨βrr⟩t and ⟨βθθ⟩t, re-

spectively, but βV
φφ is only about one half of ⟨βφφ⟩t. The variations

of the δi also exceed their time-averages by several times. Thus,
given that the relative cyclic variations in the mean flows are at
most around 10% (see the discussion in Käpylä et al. (2016a)),
we may conclude that the back-reaction of the mean field onto
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Fig. 11. Quenching of transport coefficients shown as 2D histograms of αrr (a), γr (b), βrr (c), αφφ (d), γθ (e), βφφ (f), normalized by their time
averages, over the normalized energy density of the mean field B2/B2

eq. Data taken from the entire domain and the whole saturated stage. Red
and yellow lines: mean and median, respectively; blue contours: margins of range, in which 50% of the values lay. Green line: ∼ 1/

(

1 + B 2/B2
eq
)

.
Inlays: average and median in log-log scale for zoomed-in range; dotted and dashed green: ∼ 1/

(

1 + B 3/B3
eq
)

and ∼ 1/
(

1 + B 4/B4
eq
)

, respectively.

be divided into a constant (= time-averaged) part and a part with
temporal average zero, called variation (indicated by superscript
v), such as

α = ⟨α⟩t + α
v. (10)

In Fig. 12, we plot the variations of the diagonal components
of α and β, along with γ, δ and the corresponding toroidal and
radial mean field for a typical cycle, the definition and computa-
tion of which was described in Section 4.2. All coefficients show
clear cyclic variations with the activity cycle period (= half the
magnetic cycle period), owed to the quadratic effect of the mean
field on the velocity fluctuations. In many cases this is best visi-
ble at high latitudes. αθθ, γr, γθ and δφ seem to be predominantly
quenched by the toroidal field, while αrr, γφ, δr and the shown
components of β seem to be predominantly quenched by the ra-
dial field as indicated by the pattern at high latitudes. At lower
latitudes, the variations exhibit time scales shorter than the ac-
tivity cycle, which cause a noisy signal when folding the cycles.
The fast poleward migrating constituent of Bφ near the surface at
low latitudes (ghosts of which are visible in Fig. 12), discussed
in Warnecke et al. (2014) and Käpylä et al. (2016a), is one can-
didate for causing such a signal. As discussed in Käpylä et al.
(2016a) for a similar run, this high-frequency dynamo mode is
highly incoherent over time, i.e. cycle length and phase change

on short time scales, which can well be the cause of the noisy
appearance when averaged over several cycles.

To quantify the variations further, we plot in Fig. 13 their rms
values, defined as

αV
i j =

√

⟨αv 2
i j ⟩t , etc. (11)

For all shown coefficients these are stronger at low than at higher
latitudes. Near the surface (r = 0.98) the variations have their
maxima around ±(10 . . . 15)◦ latitude. This distribution indicates
a strong influence of the mentioned poleward migrating high fre-
quency constituent. However, in the middle of the convection
zone (r = 0.84) the maxima are around the equator, where the
high frequency constituent is not present (Käpylä et al. 2016a).
In addition, at mid to high latitudes the variations show also sig-
nificant values. The variations of αii and γi are roughly equal to
their time averages near the surface, but significantly bigger in
the middle of the convection zone near the equator. Furthermore,
βV

rr and βV
θθ are significantly stronger than ⟨βrr⟩t and ⟨βθθ⟩t, re-

spectively, but βV
φφ is only about one half of ⟨βφφ⟩t. The variations

of the δi also exceed their time-averages by several times. Thus,
given that the relative cyclic variations in the mean flows are at
most around 10% (see the discussion in Käpylä et al. (2016a)),
we may conclude that the back-reaction of the mean field onto
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where we add the two diffusivities to a total diffusivity hT = ht +h . The tur-
bulent diffusivity ht in general increases the diffusion of the magnetic field and
hence cannot contribute to a dynamo effect, but there can also be exceptions
(see e.g. Devlen et al., 2012, where a case with hT < 0 was found). With a zero
mean velocity field, the term ———⇥

�
aBBB

�
, called the a-effect, is the only effect

capable of amplifying a magnetic field (Steenbeck et al., 1966). For homoge-
neous and isotropic turbulence, a can be expressed by (see e.g. Pouquet et al.,
1976)

a =�1
3

tcwww 0 ·uuu0+ 1
3

tc

r
JJJ0 ·BBB0 = aK +aM, (3.19)

where tc is the turbulent correlation time, www 0 = ———⇥ uuu0 is the fluctuating vor-
ticity. aK is the kinetic, and aM the magnetic part of a , which can provide
an important feedback of the mean magnetic field on a . If a and hT are con-
stant in space, we can move them in front of the derivatives. If we additionally
assume axisymmetry in spherical coordinates along the v-axis (v = r sinq ,
∂

∂f = 0), we can divide the mean magnetic field in a poloidal and toroidal part
BBB = BBBpol +BBBtor with BBBpol =

�
Br,Bq ,0

�
and BBBtor =

�
0,0,Bf

�
. Then we can

decompose the mean-field induction equation in two separate equations:

∂BBBpol

∂ t
= a———⇥BBBtor +hTDBBBpol (3.20)

∂BBBtor

∂ t
= a———⇥BBBpol +hTDBBBtor, (3.21)

where we have used Eq. (3.3). Here we can see, why this dynamo is called a2-
dynamo. The toroidal field gets amplified by the a-effect from the poloidal
field and the poloidal field gets amplified by the a-effect from the toroidal
field.

3.2.2 a–W-dynamo

Now we consider an additional mean flow, and Eq. (3.18) will change to

∂BBB
∂ t

= ———⇥
�
uuu⇥BBB

�
+———⇥

�
aBBB

�
�———⇥

�
hT———⇥BBB

�
. (3.22)

Applying now a mean flow uuu = uuutor = (0,0,Wv), which corresponds to a ro-
tation with angular velocity W and using similar assumptions as above, we can
also write two separate equations

∂BBBpol

∂ t
= a———⇥BBBtor +hTDBBBpol (3.23)

∂BBBtor

∂ t
= ———⇥

�
uuutor ⇥BBBpol

�
+a———⇥BBBpol +hTDBBBtor, (3.24)

33

1976). aK describes the magnetic field amplification in the kinematic regime,
i.e. when the magnetic field is weak and does not react back on the flow. In
this stage, aM is much smaller than aK and can be neglected. For larger mag-
netic fields, aM becomes much stronger and contributes with an opposite sign
to a . We know from numerical simulations of homogeneous and isotropic tur-
bulence (see e.g. Brandenburg and Subramanian, 2005) that the magnetic field
grows first exponentially, which is consistent with linear stability analysis, and
then saturates, when the field has become sufficiently strong. Usually, www 0 ·uuu0
and JJJ0 ·BBB0 have the same sign, let us assume the positive. As we see from
Eq. (3.19), aM enters with a plus sign and can balance with the negative aK, if
the field is strong enough. For helical magnetic fields, aM can be related to the
mean magnetic helicity of the fluctuating fields

aM =
1
3

tc

r
JJJ0 ·BBB0 ⇡

k2
f

3
tc

r
AAA0 ·BBB0, (3.28)

where k f is the typical wavenumber of the fluctuations. Now let us look at the
evolution of the mean magnetic helicity. We first consider the mean magnetic
helicity of the total field h = AAA ·BBB, where the evolution equation is given by
taking the mean of every term of Eq. (3.27)

∂
∂ t

h =
∂
∂ t

AAA ·BBB =�2µ0hJJJ ·BBB�——— ·FFFh. (3.29)

The mean magnetic helicity h has two contributions: one from the mean-fields
hm = AAA ·BBB and one from the fluctuating fields h f = AAA0 ·BBB0. In their evolution
equations, an additional term appears arising from the electromotive force E =
uuu0 ⇥BBB0, see Eq. (3.17),

∂
∂ t

hm=
∂
∂ t

AAA ·BBB = 2uuu0 ⇥BBB0 ·BBB�2µ0hJJJ ·BBB �——— ·FFFm
h , (3.30)

∂
∂ t

h f =
∂
∂ t

AAA0 ·BBB0 =�2uuu0 ⇥BBB0 ·BBB�2µ0hJJJ0 ·BBB0�——— ·FFF f
h , (3.31)

where h = hm + h f and FFFh = FFF
m
h +FFF

f
h . Using Eq. (3.28) together with the

evolution of h f from Eq. (3.31), we express the evolution of the magnetic aM,
see Kleeorin and Ruzmaikin (1982) by

∂aM

∂ t
=�2htk2

f

 
uuu0 ⇥BBB0 ·BBB

B2
eq

+
aM

ReM

!
�——— ·FFFaM , (3.32)

where the mean flux of aM is related to the mean helicity flux of the fluctuating
fields by

FFFaM =
htk2

f

B2
eq

FFF
f
h , (3.33)

35
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evolution of the mean magnetic helicity. We first consider the mean magnetic
helicity of the total field h = AAA ·BBB, where the evolution equation is given by
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∂
∂ t

AAA ·BBB =�2µ0hJJJ ·BBB�——— ·FFFh. (3.29)

The mean magnetic helicity h has two contributions: one from the mean-fields
hm = AAA ·BBB and one from the fluctuating fields h f = AAA0 ·BBB0. In their evolution
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where h = hm + h f and FFFh = FFF
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h . Using Eq. (3.28) together with the

evolution of h f from Eq. (3.31), we express the evolution of the magnetic aM,
see Kleeorin and Ruzmaikin (1982) by

∂aM

∂ t
=�2htk2
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uuu0 ⇥BBB0 ·BBB

B2
eq

+
aM

ReM

!
�——— ·FFFaM , (3.32)

where the mean flux of aM is related to the mean helicity flux of the fluctuating
fields by

FFFaM =
htk2

f

B2
eq

FFF
f
h , (3.33)

35

where Beq is the magnetic equipartition field strength, i.e. a magnetic field,
whose energy is equal to kinetic energy. The expression (3.32) is also called
the dynamical quenching formula and describes an important issue of the dy-
namo theory. For high magnetic Reynolds numbers ReM, the a-effect is catas-
trophically quenched (see e.g. Vainshtein and Cattaneo, 1992; Cattaneo and
Hughes, 1996; Brandenburg and Dobler, 2001). This can be seen by setting
the left-hand side of Eq. (3.32) to zero and using aM = a �aK

a =
aK +ReM

⇣
htJJJ ·BBB� 1

2 ——— ·FFF f
h

⌘
/B2

eq

1+ReMBBB2
/B2

eq

(3.34)

For high magnetic Reynolds numbers and vanishing flux, the second term bal-
ances with aK to a zero a . However, it is important that the mean magnetic
helicity flux also enters into this equation. If FFF f

h is negative and large enough
it can suppress the quenching (Blackman and Field, 2000). It has been seen
in several numerical simulations of dynamos (Brandenburg and Subramanian,
2005; Mitra et al., 2011; Del Sordo et al., 2013) that if one allows for mag-
netic helicity fluxes, the catastrophic quenching is suppressed. The behavior is
one of the motivations for using a combined model of a convection zone and
a corona as in Papers I to V. An open boundary of a dynamo domain allows
magnetic helicity fluxes to escape and alleviates the catastrophic quenching at
high Reynolds numbers.

36

Brandenburg & 
Subramanian 2005

Magnetic helicity fluxes
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Fig. 15. Time evolution of the magnetic helicity flux of the large-scale
field, smooth over two data points. Here, the mean of magnetic helic-
ity flux out through the surface of the northern hemisphere (black) is
shown, together with that through the southern hemisphere (dotted red),
and the equator (dashed blue).

out that a major part of the flux goes through the equator. The
part of the magnetic helicity flux that goes through the surface is
about 20% of ηtB2

eq. However, the magnetic helicity flux should
primarily depend on B rather than Beq. In the present simula-
tions, where the dynamo works with a fully helical field, the two
are comparable. This is not the case in the Sun, where the esti-
mated field strength is expected to be about 300 G (Brandenburg
2009). Thus, to compare with the Sun, a more reasonable guess
for the magnetic helicity flux would be about 20% of ηt B2.
Integrating this over one hemisphere and multiplying this with
the 11 year cycle time, we find the total magnetic helicity loss
to be 2πR2ηtB2Tcyc, which corresponds to 5 × 1047 Mx2 if we
use ηt = 3 × 1012 cm2 s−1. This value exceeds the estimated up-
per limit for the solar dynamo of about 1046 Mx2 per cycle given
by Brandenburg (2009). However the estimate by Brandenburg
(2009) is based on an αΩ dynamo model with α effect and shear
that yield a period comparable with the 11 year period of the
Sun. Therefore, the discrepancy with the present model, where
shear plays no role, should not be surprising. Instead, it tells us
that a dynamo without shear has to shed even more magnetic
helicity than one with shear.

The magnetic helicity flux of the large-scale field may not
a priori be gauge-invariant. However, the system is in a statis-
tically steady state and, in addition, the magnetic helicity inte-
grated over each cycle is constant. In that case the divergence of
the magnetic helicity flux is also gauge-invariant. Furthermore,
the shell-integrated magnetic helicity cannot have a rotational
component and is therefore uniquely defined. In Fig. 15 we plot
this flux and see that its maxima tend to occur about 50 turnover
times after magnetic field maxima; see Figs. 4 and 5. The helicity
flux of the small-scale field does not show a clear behavior. Since
the ejections appear to be related to the magnetic field strength
in this way, one might conclude that the magnetic helicity flux of
the large-scale field is transported through these ejections. This
result is somewhat unexpected and deserves to be reexamined
more thoroughly in future simulations where cycle and ejection
frequencies are clearly different from each other.

Next, let us look at the magnetic helicity flux of the small-
scale field. On earlier occasions, Mitra et al. (2010b) and
Hubbard & Brandenburg (2010) have been able to describe the
resulting magnetic helicity flux by a Fickian diffusion ansatz of
the form Ff = −κh∇hf , where κh/ηt0 was found to be 0.3 and 0.1,
respectively. In Fig. 17 we show that the present data allow a
similar representation, although the uncertainty is large. It turns

Fig. 16. Cumulative mean of the time evolution of the magnetic helicity
flux of the small-scale field, Ff = e × a, normalized by ηtB2

eq, where
ηt ≈ ηt0 ≡ urms/3kf was defined in Sect. 3.1. Here, the mean of magnetic
helicity flux out through the surface of the northern hemisphere (black)
is shown, together with that through the southern hemisphere (dotted
red), and the equator (dashed blue).

Fig. 17. Dependence of the latitudinal component of the magnetic he-
licity flux, F

f
θ, compared with the latitudinal gradient of the magnetic

helicity density of the small-scale field, ∇θhf , at r/R = 0.85. The large-
scale variation of the latter agrees with that of the former if the gradient
is multiplied by an effective diffusion coefficient for magnetic helicity
of κt ≈ 3ηt0.

out that κh/ηt0 is about 3, suggesting thus that turbulent mag-
netic helicity exchange across the equator can be rather efficient.
Such an efficient transport of magnetic helicity out of the dy-
namo region is known to be beneficial for the dynamo in that
it alleviates catastrophic quenching (Blackman & Brandenburg
2003). In this sense, the inclusion of CME-like phenomena is
not only interesting in its own right, but it has important benefi-
cial consequences for the dynamo itself in that it models a more
realistic outer boundary condition.

3.8. Comparison with solar wind data

Our results suggest a reversal of the sign of magnetic helicity
between the inner and outer parts of the computational domain.
This is in fact in agreement with recent attempts to measure mag-
netic helicity in the solar wind (Brandenburg et al. 2011). They
used the Taylor hypothesis to relate temporal fluctuations of the
magnetic field to spatial variations by using the fact that the tur-
bulence is swept past the space craft with the mean solar wind.
This idea can in principle also be applied to the present simu-
lations, provided we use the obtained mean ejection speed Vej
(see Table 1) for translating temporal variations (in t) into spa-
tial ones (in r) via r = r0 − Vejt. Under the assumption of homo-
geneity, one can then estimate the magnetic helicity spectrum as
H(k) = 4 Im(B̂θB̂⋆φ )/k; see Matthaeus et al. (1982) and Eq. (9) of
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Figure 9. Scaling properties of the vertical slopes of 2E · B, −2ηµ0 j · b
and −∇ · F f for models W1–W5 (upper panel) and for models S1–S6
(lower panel). (Given that the three quantities vary approximately linearly
with z, the three labels indicate their non-dimensional values at k1z = 1.)
The second panel shows that for a stronger wind the contribution from the
advective term becomes approximately independent of Rm for Rm > 170
(blue line), while that of the resistive term decreases approximately like
Rm−2/3 (red line) and 2E · B decreases approximately like Rm−1/2 (black
line).

Table 3. Additional parameters of the simulations including Rm, magnetic
diffusivity, the ratios ‘B/u’ (= Brms/urms) and ‘B/b’ (= Brms/brms), as
well as Mach number and number of mesh points. Nx indicates the number
of mesh points in the x direction. (In all cases we have Ny = Nx and Nz =
2Nx.)

Model Rm ηk1/cs ‘B/u’ ‘B/b’ Ma Nx

T1 9 5.0 × 10−3 0.58 1.13 0.18 64
T2 23 2.0 × 10−3 0.48 0.87 0.19 64
N1 37 1.0 × 10−3 0.53 0.70 0.15 64
N2 81 5.0 × 10−4 0.58 0.73 0.16 128
N3 206 2.0 × 10−4 0.27 0.33 0.17 256
N4 397 1.0 × 10−4 0.27 0.33 0.16 512
N5 722 5.0 × 10−5 0.18 0.21 0.15 1024
N6 1073 2.5 × 10−5 0.11 0.15 0.11 1024
W1 24 1.0 × 10−3 0.61 0.69 0.10 128
W2 51 5.0 × 10−4 0.42 0.48 0.10 128
W3 129 2.0 × 10−4 0.36 0.39 0.10 256
W4 265 1.0 × 10−4 0.28 0.31 0.11 512
W5 540 5.0 × 10−5 0.19 0.22 0.11 1024
M2 51 5.0 × 10−4 0.36 0.45 0.10 128
S1 24 1.0 × 10−3 0.40 0.55 0.10 64
S2 51 5.0 × 10−4 0.31 0.42 0.10 128
S3 133 2.0 × 10−4 0.20 0.27 0.11 256
S4 271 1.0 × 10−4 0.17 0.23 0.11 512
S5 548 5.0 × 10−5 0.15 0.19 0.11 1024
S6 1063 2.5 × 10−5 0.14 0.17 0.11 1024
I1 26 1.0 × 10−3 0.18 0.36 0.10 64
I2 55 5.0 × 10−4 0.13 0.26 0.11 128

The numerical resolution in the x direction, Nx, is given in the last
column. This is also the resolution used in the y direction, while
that in the z direction is always twice as large.

4 C O N C L U S I O N S

In the present work, we have examined the effects of an advective
magnetic helicity flux in DNS of a turbulent dynamo. The present
simulations without shear yield an oscillatory large-scale field ow-
ing to the spatially varying kinetic helicity profile with respect to
the equatorial plane. We emphasize in this context that the possi-
bility of oscillatory dynamos of α2 type is not new (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987), but until recently all
known examples were restricted to spherical shell dynamos where
α changes sign in the radial direction. The example found by Mitra
et al. (2010b) applies to a spherical wedge with latitudinal variation
of α changing sign about the equator. Similar results have also been
obtained in a mean-field dynamo with a linear variation of α(z) ∝ z
(Brandenburg et al. 2009). Our present simulations are probably the
first DNS of such a dynamo in Cartesian geometry. Closest to our
simulations are those of MCCTB who used perfectly conducting
outer boundary conditions without wind, and also found oscillatory
solutions. Surprisingly, however, oscillations are here only obtained
if there is at least a slight outflow.

One would have expected that catastrophic quenching can be
alleviated if magnetic helicity is removed from the domain at a
rate larger than its diffusion rate, that is, the advective term ∇ · F f

dominates over the resistive term, 2ηµ0 j · b. Fig. 9 shows that,
for Rm ! 200, the latter term decreases linearly with decreasing
η, while the former only decreases proportional to η1/2, i.e. pro-
portional to Rm−1/2. This would have led us to the estimate that
for Rm ≈ 4 × 103 the catastrophic quenching can be alleviated
by a wind with SW ≈ 0.005. Our new results suggest that this can
happen already for smaller values of Rm. The reason for this is still
unclear. It is possible that catastrophic quenching was an artefact of
intermediate values of Rm, as suggested by Hubbard & Branden-
burg (2012), or that a magnetic helicity flux can have an effect even
though it is weak compared with diffusive terms.

Finally, we should emphasize that we have only examined here
the case of subsonic advection. In real astrophysical cases, like
galactic and stellar winds, the outflow is instead supersonic and can,
thus, play an even more important role in alleviating the catastrophic
quenching through the advection of magnetic helicity. This assumes,
of course, that the dynamo is strong enough to be still excited in the
presence of a stronger wind.
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Fig. 15. Time evolution of the magnetic helicity flux of the large-scale
field, smooth over two data points. Here, the mean of magnetic helic-
ity flux out through the surface of the northern hemisphere (black) is
shown, together with that through the southern hemisphere (dotted red),
and the equator (dashed blue).

out that a major part of the flux goes through the equator. The
part of the magnetic helicity flux that goes through the surface is
about 20% of ηtB2

eq. However, the magnetic helicity flux should
primarily depend on B rather than Beq. In the present simula-
tions, where the dynamo works with a fully helical field, the two
are comparable. This is not the case in the Sun, where the esti-
mated field strength is expected to be about 300 G (Brandenburg
2009). Thus, to compare with the Sun, a more reasonable guess
for the magnetic helicity flux would be about 20% of ηt B2.
Integrating this over one hemisphere and multiplying this with
the 11 year cycle time, we find the total magnetic helicity loss
to be 2πR2ηtB2Tcyc, which corresponds to 5 × 1047 Mx2 if we
use ηt = 3 × 1012 cm2 s−1. This value exceeds the estimated up-
per limit for the solar dynamo of about 1046 Mx2 per cycle given
by Brandenburg (2009). However the estimate by Brandenburg
(2009) is based on an αΩ dynamo model with α effect and shear
that yield a period comparable with the 11 year period of the
Sun. Therefore, the discrepancy with the present model, where
shear plays no role, should not be surprising. Instead, it tells us
that a dynamo without shear has to shed even more magnetic
helicity than one with shear.

The magnetic helicity flux of the large-scale field may not
a priori be gauge-invariant. However, the system is in a statis-
tically steady state and, in addition, the magnetic helicity inte-
grated over each cycle is constant. In that case the divergence of
the magnetic helicity flux is also gauge-invariant. Furthermore,
the shell-integrated magnetic helicity cannot have a rotational
component and is therefore uniquely defined. In Fig. 15 we plot
this flux and see that its maxima tend to occur about 50 turnover
times after magnetic field maxima; see Figs. 4 and 5. The helicity
flux of the small-scale field does not show a clear behavior. Since
the ejections appear to be related to the magnetic field strength
in this way, one might conclude that the magnetic helicity flux of
the large-scale field is transported through these ejections. This
result is somewhat unexpected and deserves to be reexamined
more thoroughly in future simulations where cycle and ejection
frequencies are clearly different from each other.

Next, let us look at the magnetic helicity flux of the small-
scale field. On earlier occasions, Mitra et al. (2010b) and
Hubbard & Brandenburg (2010) have been able to describe the
resulting magnetic helicity flux by a Fickian diffusion ansatz of
the form Ff = −κh∇hf , where κh/ηt0 was found to be 0.3 and 0.1,
respectively. In Fig. 17 we show that the present data allow a
similar representation, although the uncertainty is large. It turns

Fig. 16. Cumulative mean of the time evolution of the magnetic helicity
flux of the small-scale field, Ff = e × a, normalized by ηtB2

eq, where
ηt ≈ ηt0 ≡ urms/3kf was defined in Sect. 3.1. Here, the mean of magnetic
helicity flux out through the surface of the northern hemisphere (black)
is shown, together with that through the southern hemisphere (dotted
red), and the equator (dashed blue).

Fig. 17. Dependence of the latitudinal component of the magnetic he-
licity flux, F

f
θ, compared with the latitudinal gradient of the magnetic

helicity density of the small-scale field, ∇θhf , at r/R = 0.85. The large-
scale variation of the latter agrees with that of the former if the gradient
is multiplied by an effective diffusion coefficient for magnetic helicity
of κt ≈ 3ηt0.

out that κh/ηt0 is about 3, suggesting thus that turbulent mag-
netic helicity exchange across the equator can be rather efficient.
Such an efficient transport of magnetic helicity out of the dy-
namo region is known to be beneficial for the dynamo in that
it alleviates catastrophic quenching (Blackman & Brandenburg
2003). In this sense, the inclusion of CME-like phenomena is
not only interesting in its own right, but it has important benefi-
cial consequences for the dynamo itself in that it models a more
realistic outer boundary condition.

3.8. Comparison with solar wind data

Our results suggest a reversal of the sign of magnetic helicity
between the inner and outer parts of the computational domain.
This is in fact in agreement with recent attempts to measure mag-
netic helicity in the solar wind (Brandenburg et al. 2011). They
used the Taylor hypothesis to relate temporal fluctuations of the
magnetic field to spatial variations by using the fact that the tur-
bulence is swept past the space craft with the mean solar wind.
This idea can in principle also be applied to the present simu-
lations, provided we use the obtained mean ejection speed Vej
(see Table 1) for translating temporal variations (in t) into spa-
tial ones (in r) via r = r0 − Vejt. Under the assumption of homo-
geneity, one can then estimate the magnetic helicity spectrum as
H(k) = 4 Im(B̂θB̂⋆φ )/k; see Matthaeus et al. (1982) and Eq. (9) of
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Fig. 15. Time evolution of the magnetic helicity flux of the large-scale
field, smooth over two data points. Here, the mean of magnetic helic-
ity flux out through the surface of the northern hemisphere (black) is
shown, together with that through the southern hemisphere (dotted red),
and the equator (dashed blue).
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mated field strength is expected to be about 300 G (Brandenburg
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Fig. 16. Cumulative mean of the time evolution of the magnetic helicity
flux of the small-scale field, Ff = e × a, normalized by ηtB2

eq, where
ηt ≈ ηt0 ≡ urms/3kf was defined in Sect. 3.1. Here, the mean of magnetic
helicity flux out through the surface of the northern hemisphere (black)
is shown, together with that through the southern hemisphere (dotted
red), and the equator (dashed blue).
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helicity density of the small-scale field, ∇θhf , at r/R = 0.85. The large-
scale variation of the latter agrees with that of the former if the gradient
is multiplied by an effective diffusion coefficient for magnetic helicity
of κt ≈ 3ηt0.
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netic helicity exchange across the equator can be rather efficient.
Such an efficient transport of magnetic helicity out of the dy-
namo region is known to be beneficial for the dynamo in that
it alleviates catastrophic quenching (Blackman & Brandenburg
2003). In this sense, the inclusion of CME-like phenomena is
not only interesting in its own right, but it has important benefi-
cial consequences for the dynamo itself in that it models a more
realistic outer boundary condition.

3.8. Comparison with solar wind data

Our results suggest a reversal of the sign of magnetic helicity
between the inner and outer parts of the computational domain.
This is in fact in agreement with recent attempts to measure mag-
netic helicity in the solar wind (Brandenburg et al. 2011). They
used the Taylor hypothesis to relate temporal fluctuations of the
magnetic field to spatial variations by using the fact that the tur-
bulence is swept past the space craft with the mean solar wind.
This idea can in principle also be applied to the present simu-
lations, provided we use the obtained mean ejection speed Vej
(see Table 1) for translating temporal variations (in t) into spa-
tial ones (in r) via r = r0 − Vejt. Under the assumption of homo-
geneity, one can then estimate the magnetic helicity spectrum as
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Coronal model driven by emerging flux simulation 
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J. Warnecke et al.: Current systems in coronal loops

Fig. 4. 3D rendering of the current and magnetic field lines in top view and side view in the x-direction. The green lines show current lines through
the apex of the magnetic field lines (black lines), the purple and red ones are through points at the middle-left and middle-right of the magnetic
field lines, respectively. In grey scale (white: positive and black: negative) is plotted the vertical magnetic field at a height of z = 2.9 Mm.

along the loop, it mean, that the field cannot be force-free. Why
the magnetic field and current density is parallel on one side of
the loop and antiparallel on the other side of the loop, need fur-
ther investigations. As shown in Figure 2, the field lines and the
emission structure show a strong overlap, therefore the change
of sign of the current density has to be inside the bright loop
structure.

As a next step, we track the field lines of the current density
and show them together with magnetic field lines in a 3D volu-
men rendering in Figure 4. The magnetic field lines are confined
with a small cross section, compare also with Figure 2. The two
footpoints of the field lines do not lie in the center of the mag-
netic active region, they lie a few Mm in the periphery, see also
Figure 9 of and discussion in Chen et al. (2014). The overall
structure of the current density lines is helical, winding around
the magnetic field lines. The red ones, which all originate at the
positive magnetic pole on the right hand side of Figure 4, con-
nect the two magnetic polarities illustrating a continues current
antiparallel to the magnetic field. However, the purple magnetic
field lines, which originate from the negative magnetic pole on
the left hand side, follow the loop to close to the apex and then
change the sign to connect back to same magnetic polarity. These
current lines illustrate, that the current is able to have a differ-
ent sign along the loop. It basically means, that currents in left
leg of the loop are pointing downwards, so parallel to the mag-
netic field, see Figure 3 and then further up changing sign to
become anti-parallel with the magnetic field. Furthermore, the
complex helical structure of the current lines suggest that the
force-freeness of the magnetic field is only partially fulfilled.

The currents are not only anti-parellel to the magnetic field
along the loop as shown in Figure 2, the vertical current is in-
deed positive in and around the two legs of the loop at a height
of z = 5 Mm, see Figure 5(a) and (c) for the corresponding ver-
tical magnetic field. This suggested that the current structure in
the loop is driven from the dynamic in lower corona, and en-
force the sign of current to the loop above. This behavior can
be explained in the following way. As already shown in Chen
et al. (2014, 2015), the magnetic footpoints associated with the
loop are moving into the magnetic poles during the emergence
of the loop. So, the rising of the loop cause an increase in dis-
tance between the two legs of the loop. Furthermore as shown in
Figure 2, the magnetic field lines in the loop possess a non-zero
contribution in the y direction resulting in inclination of the loop.
This inclination of the magnetic field in the legs of loop and their
motions apart from each other results in the negative current see
in the two legs of the loop. This can be shown by calculating the
vertical component of the Electromotive force u × B. As shown
in Figure 5(b) (u× B)z is indeed negative for both legs indicated
by white dots.

3.2. Consequences

The complex current system around the bright loop structure has
consequences for the magnetic field state and the forcing asso-
ciated with the loop. As a first step, we want to investigate how
the magnetic field deviate from a force-free magnetic field. For
this purpose, we extrapolate a potential magnetic field using the
vertical magnetic field from the z = 0 surface. The difference of
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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near

Electronic address: warnecke@mps.mpg.de (Revision: 1.66 )

the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-

Pouquet et al. 1976

helicity is  
a pseudo scalar: 

r⌦ = const

Wright & Drake 
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↵ ⇠ ⌦⌧

Act. ⇡ j · b ⇡ ! · u



21st of  November 2017 Helicity Thinkshop, Tokio, Japan 27

Conclusions
• Alpha effect is more than „just" helicity. 

• Alpha becomes highly anisotropic for high rotation. 

• Increase of  the helicity fluxes with rotation 

• Decrease of  the helicity fluxes with Rm. 

• Helicity flux shown cycle dependency. 

• Magnetic helicity important for coronal heating 

• Magnetic helicity might play important role for stellar 

Rotation-Activity-Relation.
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Warnecke: Dynamo cycles in global convection simulation

Fig. 3. cycles

Fig. 4. Spectrum

Fig. 5. cycles with PY

Fig. 6. Brms, shear, alpha
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Fig. 7. cycles with PY

Fig. 8. Axel’s plot

Fig. 9. Axel’s plot II
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Warnecke: Dynamo cycles in global convection simulation

Fig. 10. Axel’s plot+ observations and models
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Fig. A.1. Comparison of all components of the original electromotive force E (top row) with the reconstructed one, ET in the middle of the
convection zone, r = 0.85 R. Middle row: Reconstruction with the time dependent transport coefficients, ET; Bottom row: reconstruction with the
time-averaged transport coefficients, ⟨ET⟩t, using Eq. (4). All data smoothed over 20 neighboring points in time.

Fig. B.1. Br from a DNS and a corresponding mean-field model employing the turbulent transport coefficients, obtained with the test-field method
from the same DNS, as functions of latitude and time, where τ = 1/urmskf is the turbulent turnover time.
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Warnecke et al.: Turbulent transport coefficients of solar-like stars

x x

Fig. C.1. Comparison of analytical and test-field results for the flow
(C.1) showing the mean-field coefficients as a function of x. Red solid:
numerical, blue dashed: analytical. v0 = w0 = 1, k0 = 2, η = 0.05
in arbitrary units. The discrepancies in b211, b121, and b321 near the x
boundaries are systematic errors due to the use of periodic boundary
conditions for the solution of (5), which conflicts with the in x and z
linear test fields.
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Fig. C.1. Comparison of analytical and test-field results for the flow
(C.1) showing the mean-field coefficients as a function of x. Red solid:
numerical, blue dashed: analytical. v0 = w0 = 1, k0 = 2, η = 0.05
in arbitrary units. The discrepancies in b211, b121, and b321 near the x
boundaries are systematic errors due to the use of periodic boundary
conditions for the solution of (5), which conflicts with the in x and z
linear test fields.
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to, e.g., the opposite sign of αrr and the wrong propagation di-
rection from the Parker-Yoshimura rule.

For followup work, we plan to use the determined trans-
port coefficients in mean-field simulations to investigate in de-
tail their effect and their descriptive power for the magnetic field
evolution. We also plan to investigate, how the coefficients and
therefore the dynamo mechanism changes by changing rotation,
stratification and magnetic, fluid, and entropy diffusivities. Fur-
thermore, it would be interesting to study the effects of a realistic
treatment of the outer magnetic boundary (Warnecke et al. 2011,
2012, 2013a, 2016a) as well as the effect of the spontaneous for-
mation of magnetic flux concentrations (e.g. Brandenburg et al.
2013; Warnecke et al. 2013b, 2016b; Käpylä et al. 2016b).

Appendix A: Reconstruction of the electromotive
force

To show that the reconstruction of the turbulent electromotive
force, employing the turbulent transport coefficients and here
being labelled ET, agrees reasonably well with the directly ob-
tained u′ × b′ (‘original’ E), we plot in Fig. A.1 both quantities
in the middle of the convection zone. The location of strong ac-
tivity at around ±30◦ latitudes is well reproduced in all compo-
nents. Furthermore the polarity reversals at high latitude agree
well in original and reconstructed E. Close to the equator the
agreement degrades: In the original E we find a stationary pos-
itive pattern in the radial component and an asymmetry across
the equator in the latitudinal one, but this pattern is not repro-
duced in ET. Furthermore, the absolute strength of the original
E is only nearly half of that of ET. If we reconstruct the elec-
tromotive force from the time-averaged turbulent transport co-
efficients (⟨ET⟩t), the absolute values are closer to the original
ones, but still around 30% larger. In all, ⟨ET⟩t seems to give a
better reconstruction than ET, but the large random variations in
time might blur the comparison (see Section 4.5). We associate
the differences between reconstructed and original E with lack
of scale separation, that is, non-locality in space and time (Bran-
denburg et al. 2008b; Hubbard & Brandenburg 2009; Rheinhardt
& Brandenburg 2012) and will address these issues in forthcom-
ing publications.

Appendix B: Comparison with mean-field model

To show how well the transport coefficients describe and pre-
dict the mean magnetic field, we performed additional direct
numerical simulations (DNS) producing an oscillating spherical
dynamo from forced turbulence. The setup is similar to Mitra
et al. (2010), but with forcing wavenumber kf/k1 = 10, where
k1 = 2π/0.3R corresponds to the shell thickness, and Re = 0.63,
ReM = 0.96. We computed the turbulent transport coefficients
using the presented method and solved a corresponding mean-
field model, which reproduces three key features of the field
evolution in the DNS: (1) The growth rate of the magnetic field
(λDNS = 0.00558/τ, λMF = 0.00570/τ for the volume averaged
rms field), (2) its oscillation period (TDNS = 109 τ, TMF = 113 τ)
and (3) its complex latitudinal distribution. Fig. B.1 shows the ra-
dial mean magnetic field as a function of time and latitude from
both the DNS and the mean-field model. It is rather expected that
the correspondence is very good in this case, as the scale sepa-
ration is high and the Reynolds numbers are small. In our com-
pressible convection simulations these conditions are no longer
fulfilled, hence non-local effects in space and time likely play
an important role. Therefore, comparison to mean-field models

is less trivial and will be addressed in detail in a forthcoming
publication.

Appendix C: Comparison with analytical results

For comparison with analytic results we have chosen the flow

u =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v0 sin k0x cos k0y
−v0 cos k0x sin k0y
w0 cos k0x cos k0y

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.1)

in a Cartesian (x, y, z) domain, out of a family of three, intro-
duced by Roberts (1970); see Rheinhardt et al. (2014) for com-
parison. Here, v0 and w0 are constant prefactors and k0 is the hori-
zontal wavenumber of the flow. Under SOCA and for η = const,
we obtain, with averaging over y, for the coefficients of Equa-
tion (3).

a11 = a31 = a22 = ai3 = 0, i = 1, 2, 3, (C.2)

a12 =
v0w0

2ηk0
cos2 k0x, a21 =

v0w0

4ηk0
, (C.3)

a32 = −
v20

2ηk0
sin k0x cos k0x, (C.4)

b11i = b31i = b22i = b13i = b33i = 0, i = 1, 3, (C.5)

b211 = b121 = b323 = −b233 = −
v0w0

4ηk2
0

sin k0x cos k0x, (C.6)

b321 = −
v20

4ηk2
0

cos2 k0x, b231 =
v20

4ηk2
0

sin2 k0x, (C.7)

b213 = −
w2

0

4ηk2
0

cos2 k0x = −b123. (C.8)

Figure C.1 shows these profiles in comparison with the results
of the test-field method applied in Cartesian geometry. To enable
maximal agreement, the non-SOCA term u′ × b′ − u′ × b′ of (5)
was switched off in the code.
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