ROLE OF HELICITY IN

SOLAR AND STELLAR DYNAMOS

JÖrn Warnecke
MAX PLANCK INSTITUTE
FOR SOLAR SYSTEM RESEARCH

Helicity

The glue to connect them all.

Helicity in the Sun

Nonalignment of rotation and gravity \downarrow
Kinetic helicity \downarrow
Alpha-effect \downarrow
Magnetic helicity + catastr. quenching \downarrow
Space weather
coronal heating

Dynamos

Alpha Omega Dynamo

Simplifications:

$=\alpha \bar{B}+\eta_{t} \nabla \times \bar{B} \quad \alpha=\frac{\tau_{c}}{3}\left(-\bar{\omega} \cdot \mathbf{u}+\frac{\overline{j_{j} \cdot \boldsymbol{b}}}{\bar{\rho}}\right)$
$\begin{aligned} & \frac{\partial \bar{B}_{\text {pol }}}{\partial t}=\alpha \nabla \times \bar{B}_{\text {tor }}+\eta_{T} \Delta \bar{B}_{\text {pol }} \quad \bar{B}=\bar{B}_{\text {pol }}+\bar{B}_{\text {tor }} \\ & \frac{\partial \bar{B}_{\text {tor }}}{\partial t}=\bar{B}_{\bar{B}_{\text {pol }}} \cdot \nabla \bar{u}_{\text {tor }}+\alpha \nabla \times \bar{B}_{\text {pol }}+\eta_{T} \Delta \bar{B}_{\text {tor }} \\ & \alpha \Omega \text { dynamo } \\ & \Omega=\bar{u}_{\text {tor }} / r \sin \theta\end{aligned}$

Electromotive force

$\mathcal{E}=\boldsymbol{a} \cdot \overline{\boldsymbol{B}}+\boldsymbol{b} \cdot \nabla \overline{\boldsymbol{B}}+\ldots$

$$
\begin{gathered}
\mathcal{E}_{i}=a_{i j} \bar{B}_{j}+b_{i j k} \partial_{j} \bar{B}_{k}+\ldots \\
\mathcal{E}=\boldsymbol{\alpha} \cdot \overline{\boldsymbol{B}}+\boldsymbol{\gamma} \times \overline{\boldsymbol{B}}-\boldsymbol{\beta} \cdot(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\delta} \times(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\kappa} \cdot(\boldsymbol{\nabla} \overline{\boldsymbol{B}})^{(S)}
\end{gathered}
$$

Test-field method

Schrinner et al. 2005, 2007, 2012

$$
\begin{aligned}
& \frac{\partial \overline{\boldsymbol{B}}}{\partial t}= \boldsymbol{\nabla} \times\left(\overline{\boldsymbol{u}} \times \overline{\boldsymbol{B}}+\overline{\left.\boldsymbol{u}^{\prime} \times \boldsymbol{B}^{\prime}\right)}-\boldsymbol{\nabla} \times \eta \boldsymbol{\nabla} \times \overline{\boldsymbol{B}},\right. \\
&\left(\mathcal{E}=\boldsymbol{\alpha} \cdot \overline{\boldsymbol{B}}+\boldsymbol{\gamma} \times \overline{\boldsymbol{B}}-\boldsymbol{\beta} \cdot(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\delta} \times(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}})-\boldsymbol{\kappa} \cdot(\boldsymbol{\nabla} \overline{\boldsymbol{B}})^{(S)}\right. \\
& \frac{\partial \boldsymbol{b}_{\mathrm{T}}^{\prime}}{\partial t}= \boldsymbol{\nabla} \times\left(\boldsymbol{u}^{\prime} \times \overline{\boldsymbol{B}}_{\mathrm{T}}+\overline{\boldsymbol{U}} \times \boldsymbol{b}_{\mathrm{T}}^{\prime}+\boldsymbol{u}^{\prime} \times \boldsymbol{b}_{\mathrm{T}}^{\prime}-\overline{\boldsymbol{u}^{\prime} \times \boldsymbol{b}_{\mathrm{T}}^{\prime}}\right) \\
&-\boldsymbol{\nabla} \times \eta \boldsymbol{\nabla} \times \boldsymbol{b}_{\mathrm{T}}^{\prime}
\end{aligned}
$$

The Simulation

Global convective dynamo simulations

$$
\begin{aligned}
\frac{\partial A}{\partial t} & =u \times B+\eta \nabla^{2} A \\
\frac{D \ln \rho}{D t} & =-\nabla \cdot u \\
\frac{D u}{D t} & =g-2 \Omega_{0} \times u+\frac{1}{\rho}(J \times B-\nabla p+\nabla \cdot 2 \nu \rho S) \\
T \frac{D s}{D t} & =\frac{1}{\rho} \nabla \cdot\left(K \nabla T+\chi_{t} \rho T \nabla s\right)+2 \nu S^{2}+\frac{\mu_{0} \eta}{\rho} J^{2}-\Gamma_{\mathrm{cool}}(r),
\end{aligned}
$$

- high-order finite-difference code
- scales up efficiently to over 60.000 cores
- compressible MHD
https:/ / github.com/pencil-code/pencil-code/

Käpylä et al. 2012, 2013, 2016, 2017

Warnecke et al. 2014, 2016
$\bar{B}_{\phi}[\mathrm{KG}]$

$\mathrm{Re}=\mathrm{Rm}=30$

$$
\mathrm{Co}=8.3
$$

$$
\mathrm{E}=1.8 \times 10^{-4}
$$

$$
-2
$$

$$
-4
$$

Ω / Ω_{0}

Magnetic quenching

Helicity Thinkshop, Tokio, Japan

Differential rotation

Omega_sol=1 $=>E=8 \times 10^{-4}$

$$
\begin{array}{lllllll}
0 & 10 & 20 & 30 & 40 & 50 & 60
\end{array}
$$

 time [yr]

Magnetic helicity fluxes

$$
\begin{gathered}
\alpha=-\frac{1}{3} \tau_{\mathrm{c}} \overline{\boldsymbol{\omega}^{\prime} \cdot \boldsymbol{u}^{\prime}}+\frac{1}{3} \frac{\tau_{\mathrm{c}}}{\bar{\rho}} \overline{\boldsymbol{J}^{\prime} \cdot \boldsymbol{B}^{\prime}}=\alpha_{\mathrm{K}}+\alpha_{\mathrm{M}}, \\
\frac{\partial \alpha_{\mathrm{M}}}{\partial t}=-2 \eta_{t} k_{f}^{2}\left(\frac{\overline{\boldsymbol{u}^{\prime} \times \boldsymbol{B}^{\prime}} \cdot \overline{\boldsymbol{B}}}{B_{\mathrm{eq}}^{2}}+\frac{\alpha_{\mathrm{M}}}{\operatorname{Re}_{\mathrm{M}}}\right)-\boldsymbol{\nabla} \cdot \overline{\mathcal{F}}_{\alpha_{\mathrm{M}}}, \\
\overline{\mathcal{F}}_{\alpha_{\mathrm{M}}}=\frac{\eta_{t} k_{f}^{2}}{B_{\mathrm{eq}}^{2}} \overline{\mathcal{F}}_{h}^{f}, \\
\alpha=\frac{\alpha_{\mathrm{K}}+\operatorname{Re}_{\mathrm{M}}\left(\eta_{\mathrm{t}} \overline{\boldsymbol{J}} \cdot \overline{\boldsymbol{B}}-\frac{1}{2} \boldsymbol{\nabla} \cdot \overline{\mathcal{F}}_{h}^{f}\right) / B_{\mathrm{eq}}^{2}}{1+\operatorname{Re}_{\mathrm{M}} \overline{\boldsymbol{B}}^{2} / B_{\mathrm{eq}}^{2}} \quad \begin{array}{c}
\text { Brandenburg \& } \\
\text { Subramanian 2005 }
\end{array}
\end{gathered}
$$

Helicity fluxes

$\overline{\boldsymbol{F}}_{\mathrm{f}}=\overline{\boldsymbol{e} \times \boldsymbol{a}}$

Del Sordo et al. 2013

Coronal model driven by emerging flux simulation

flux-emergence simulation

from / similar to Cheung et al (2010) ApJ 720, 233

- flux rope rises from bottom and breaks through surface
\rightarrow pair of sunspots

coronal simulation

- use photospheric layer (T, ρ, v, B) as time-dependent lower boundary
\rightarrow magnetic field expands
\rightarrow coronal loops form

Coronal model driven by emerging flux simulation

- loops form at different places at different times
- loop footpoints are in sunspot periphery (penumbra)

synthesized coronal emission ($1.510^{6} \mathrm{~K}$)

 view from top: \(B_{\text {vert }} @\) bottom + AIA \(193 \AA\)
 view from side: AIA $193 \AA$

Helical currents in coronal loops

Rotation Activity Relation

$\nabla \Omega=\mathrm{const}$

$\alpha=\frac{\tau_{\mathrm{c}}}{3}\left(-\overline{\boldsymbol{\omega} \cdot \boldsymbol{u}}+\frac{\overline{\boldsymbol{j} \cdot \boldsymbol{b}}}{\bar{\rho}}\right)$
Pouquet et al. 1976

helicity is

a pseudo scalar:

$$
\alpha \sim \Omega \tau
$$

Wright \& Drake
Rotation 2016, Nature

Conclusions

- Alpha effect is more than ,just" helicity.
- Alpha becomes highly anisotropic for high rotation.
- Increase of the helicity fluxes with rotation
- Decrease of the helicity fluxes with Rm .
- Helicity flux shown cycle dependency.
- Magnetic helicity important for coronal heating
- Magnetic helicity might play important role for stellar Rotation-Activity-Relation.

