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How do Brown Dwarfs (or ‘Failed Stars’) form?

A brown dwarf is a ‘star’ with < 0.075 solar masses - it
does not ignite nuclear fusion

How can objects so small become gravitationally
unstable and collapse?

« Several theories: e.g. fragmentation of prestellar disk,
photo-erosion of a prestellar core or turbulent
fragmentation of a molecular cloud - can we chemically

differentiate among models?
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Turbulent fragmentation of a cloud compared to a standard collapse
forming low mass stars: NH;(1, ,-1, ), CS(3-2), N,H*(1-0), CO(2-1), HCO*(3-2)
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Figure 2. Brightness temperature expected for the five transitions discussed in Section 4.1. On the left, a freefall model is shox
on the right a turbulent fragmentation model in which a 0.07 M® core is formed from a cloud using the first set of initial condit
clear gap is apparent in the turbulent fragmentation model with CO and NHg being much brighter than other molecules.

Holdship & Viti, MNRAS, 2016



Observational tests and comparisons with
observations

Models were fitted to
data from Benedettini et
al. (2012) on Lupus and
Seo et al. (2015) on
Taurus

Lupus: Density and
Mass unknown but they
provide column
densities; none of those
cores seem to be
forming BDs

Taurus =2

Table 2. Observable molecules for different models at
nyg >107cm—3. Where an observable molecule is considered to
be one that has a transition which would emit with a brightness
temperature greater than 100 mK. All models use the first set of
initial conditions. A + indicates an observable molecule.

Molecule 0.01 Mg 0.04 Mg 007 Mg 0.10 Mg Freefall

CcO + + + + +
HCO+ +

CS +

NHg + + + + +
NoHt +

Table 3. List of cores from Seo et al. (2015) with model equiv-
alents. Fractional abundances given in units of 102, those from
the model are taken to be the average abundance for the post
shock core.

Mass/ Mg,  Virial Mass/ Mg,  X(NH3)observed  X(NH3)model

0.04 0.31 1.13 0.07
0.07 0.22 1.07 0.32
0.10 0.58 1.8 0.5
0.88 0.77 3.65 1.5
0.95 0.98 1.35 2.5

0.99 1.09 1.00 1.0




Free Fall
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Massive star formation: tracing the very early stages
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Small: 107 - 102 pc
Dense: ~ 107 H, cm-3
Warm: 2102 K

Opaque: A, >10%2 mag
Transient: < 10° yrs
Location: < 0.1 pc from star
Chemically very rich
because they retain the
chemical history of the
natal cloud



Massive star forming regions: the big problem of line confusion in the
submm/far IR
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Brightness termperature (K)

3 Line confusion due to:

1 » Richness of the spectrum
{ « Blending (due to large
E linewidths)
"]« Uncertainties in the lab
' rest frequencies as well
as in the observations

This leads to only
tentative detections in
most cases (e.g.
glycolaldehyde @ 220.4
GHz may be acetone
instead!)
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Importance of COMs in hot cores

Calcutt et aI:. 2014
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Complex Organics in Hot cores: why low frequencies?

1. mm/Submm so full that it’s too difficult to identify COMs
2. Low frequency range is relatively clear (low E of smaller molecules fall at

higher frequencies)
3. Js across large range of frequencies: population over many energy states

because of large partition functions
4. Best range: bright lines (Sy2=1 D?) at low excitation (Eu < 20 K)

Between 76-117 GHz with log(Aij) > -5
Methyl formate (~40 transitions)
Glycolaldehyde (~60 transitions)
Acetic acid (~30 transitions)

Ethyline glycol (>50 transitions)



Astrochemistry in external galaxies
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Molecules can still be used to disentangle the different
gas components and to trace individual energetic
processes within a galaxy (e.g. star formation, X -rays,

shocks...) -




Most observed molecules

* The two most commonly observed molecules are:
CO and HCN

« But CO traces the amount and distribution of
molecular gas at large scale - great for
identification of GMC structures

 HCN is a good tracer of high density gas but not a

unique tracer of star formation (e.g. enhanced in
AGN environments).

* CS (especially J < 4) on the other hand is found to
be an ideal tracer of gas densities = 10° cm-3



CS as a dense gas tracer t

« CS emits quite strongly, not only in hot cores in our own
Galaxy but also in external galaxies

 |tis also recognized as one of the best tracers of very

dense and warm gas with line critical densities of about
10 -10" cm™3

What does mapping CS across a
galaxy yield?

|

1. It potentially reveals the density and temperature
structure

2. It ‘isolates’ the dense gas from the ISM
3. It reveals the presence of shocks
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Mapping the LMC in CS(2-1) and CS(1-0):

LMC and SMC with MOPRA: ~ 10 pc resolution (~ GMC sizes)

DEC (degrees; J2000)

—69.5

As it has been done in CO: Hughes et al.
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[Also in HCO+ and HCN if not done already]






