Stellar Convection and Oscillations and their Relationship SCORe17 in Heidelberg, October 16–20, 2017

Intensity contrast and distribution on the solar surface: old wisdom with a surprising twist.

 $\textit{Oskar Steiner}^{1,2}$, René Salhab¹ & Morten Franz¹

¹Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg i.Br., Germany ²Istituto Ricerche Solari Locarno (IRSOL), Locarno Monti, Switzerland

We define here the rms continuum intensity contrast at a given wavelength λ as

$$c_{\rm rms} = \sqrt{\left\langle \left(\frac{I_{c,\lambda} - \langle I_{c,\lambda} \rangle}{\langle I_{c,\lambda} \rangle}\right)^2 \right\rangle}$$

rms granular contrasts from *spaceborne instruments* (quiet Sun, disk center)

satellite	instrument	aperture	wavelength	$c_{ m rms}$	deconvolved	reference
SDO	HMI	14 cm	617.3 nm	4.0%	12.2%	Yeo et al. (2014)
Hinode	SOT/BFI	50 cm	555.0 nm	8.0%		Afram et al. (2011)
Hinode	SOT/SP	50 cm	630.0 nm	7.0%	14.4%	Danilovic et al. (2008)

Old wisdom: With increasing spatial resolution (telescope aperture),

the granular contrast increases.

What about the simulations?

CO⁵BOLD simulation with a grid-cell size of 10 km. No magnetic fields. Field of view 9.6 x 9.6 Mm λ [nm] 500 630 bolometric 19.5% 13.7% 15.7% rms

bolometric intensity

Courtesy, F. Calvo, IRSOL

toc — ref

CO⁵BOLD simulation with a *grid-cell size* of *40 km* (and more diffusive solver). No magnetic fields. Field of view 9.6 x 9.6 Mm λ [nm] 500 630 bolometric

 λ = 500 nm

— toc — ref

Courtesy, G. Vigeesh, KIS

bolometric intensity

toc — ref

rms granular contrast in % from simulations (quiet Sun, disk center)

wavelength λ [nm]											
code	cell size [km]	500	600	630	bolometric	reference					
CO ⁵ BOLD/Roe	10	19.5		13.7	15.7						
CO ⁵ BOLD/HLL	10	19.0		13.4	15.4						
CO ⁵ BOLD/HLL	12	18.8		13.3	15.4						
CO ⁵ BOLD/HLL	40	19.1		13.6	15.9						
CO ⁵ BOLD/HLL	80	18.7		12.9	15.6						
MURaM	7.5			14.4		Danilovic et al. (2008)					
CO ⁵ BOLD	40	21.8			14.4	Beeck et al. (2012)					
MURaM	17.6	21.8			15.4	Beeck et al. (2012)					
Stagger	40	22.1			15.1	Beeck et al. (2012)					
Nordlund	93.75	25-30	20-25			Nordlund (1984)					

Surprising twist: The granular *rms contrast of simulations* stays fairly *constant as a function of spatial resolution.*

Corollary: A simulation of low spatial resolution is not equivalent to a low resolution observation.

Physical reason: Limited convective velocities and given energy flux ($T_{\rm eff}$) fixes the intensity contrast.

For the production of synthetic intensity maps one best starts from a simulation of highest possible spatial resolution and subsequently applies the modulation transfer function of the observational instruments.

See, e.g., *Danilovic et al.* (2008, A&A 484, L17),

Wedemeyer-Böhm & Rouppe van der Voort (2009, A&A 503, 225-239)

----- toc ---- ref --

Disk-center radiative intensity distributions from observations.

— toc — ret

Distribution of the relative intensity of the vertically propagating radiation at $\lambda = 500$ nm, 630 nm, and bolometric of a CO⁵BOLD simulation of *moderate spatial spatial resolution*. The grid-cell size is 40 km. The distribution is *bimodal*.

This bimodal distribution is also seen in simulations of stellar atmospheres others than the Sun. *Trampedach et al. (2013, ApJ 769, 18)* fit it with the double Gaussian

$$n(I) = I_1 e^{((I-I_2)/I_3)^2} + I_4 e^{((I-I_5)/I_6)^2}$$

Tremblay et al. (2013, A&A 557) show distributions over a wide range of stellar types.

— toc — ref ·

 λ = 500 nm

Cell size 40 km, low-res solver

Cell size 10 km, high-res solver common gray scale: $0.65 \le I/\langle I \rangle \le 1.35$

— toc — ref

Surprising twist: The bimodality of the intensity distribution becomes less prominent with increasing spatial resolution.

Different from the rms contrast, the intensity distribution *does* depend on the spatial resolution of the simulation.

3. Non-magnetic bright points

Bolometric intensity maps

Calvo, Steiner & Freytag (2016, A&A 596, A43)

With magnetic fields: Magnetohydrodynamic simulation. Without magnetic fields: Hydrodynamic simulation

toc — ref

Table of content

- 1. Intensity rms contrast as a function of spatial resolution
- 2. Intensity distribution as a function of spatial resolution
- 3. Non-magnetic bright points

References

References

- Afram, N., Unruh, Y.C., Solanki, S.K., Schüssler, M., Lagg, A., and Vögler, A.: 2011, Intensity contrast from MHD simulations and HINODE observations, A&A, 526, A120
- Beeck, B., Collet, R., Steffen, M., Asplund, M., Cameron, R.H., Freytag, B., Hayek, W., Ludwig, H.-G., and M. Schüssler, M.: 2012, *Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes*, A&A 539, A121
- Calvo, F., Steiner, O., & Freytag, B.: 2016, Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere, A&A 596, A43
- Danilovic, S., Gandorfer, A., Lagg, A., Schüssler, M., Solanki, S.K., Vgler, A., Katsukawa, Y., and Tsuneta, S.: 2008, *The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations*, A&A 484, L17

References (cont.)

Nordlund, Å: 1984, *Modeling of Small-Scale Dynamical Processes: Convection and Wave Generation* in Small-Scale Dynamic Processes in Quiet Stellar Atmospheres, Stephen L. Keil (ed.), National Solar Observatory Conference, Sunspot, NM 88349

- Trampedach, R., Asplund, M., Collet, R., Nordlund, Å, and Stein, R.F.: 2013, ApJ 769, 18
- Tremblay, P.-E., Ludwig, H.-G., Freytag, B., Steffen, M., and Caffau, E.: 2013, Granulation properties of giants, dwarfs, and white dwarfs from the CIFIST 3D model atmosphere grid, A&A 557, A7
- Vigeesh, G., Jackiewicz, J., and Steiner, O.: 2017, Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects, ApJ 835, 148
- Yeo, K.L., Feller, A., Solanki, S.K., Couvidat, S., Danilovic, S., and Krivova, N. A.: 2011, *Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun*, A&A 529, A42

— toc — ref -