Some general results on relative

 magnetic helicity and field line helicityJean-Jacques Aly

Department of Astrophysics, CE Saclay, France

Poster presented at the Helicity Thinkshop 3
Tokyo, November 2017

Abstract

- We present some general considerations on two quantities that are of common use in solar physics: the relative magnetic helicity H and the field line helicity h of a magnetic field B contained in some domain D.
- We show how these two quantities can be expressed in terms of either the magnetic mapping of \mathbf{B} or, when B has a simple topology, the boundary values of two pairs of Euler potentials. The well-known topological invariance of H and h can be immediately seen on the formulae that are presented.
- We compute how the field line helicity varies in time when the plasma in D has finite resistivity and the footpoints of the magnetic lines on the boundary of D are submitted to shearing motions.

1. Definitions

- Notations and assumptions:
$-D=$ simply connected domain of space bounded by the connected surface S . $\mathrm{n}=$ outer normal to S .
$-B=$ smooth magnetic field contained in D. We assume that (almost) all the magnetic lines of \mathbf{B} have two footpoints on S.
$-S^{+}, S^{-}$, and S^{0}, denote the parts of S where $-B_{n}>0$ (positive polarity), $-\mathrm{B}_{\mathrm{n}}<0$ (negative polarity), and $\mathrm{B}_{\mathrm{n}}=0$, respectively. S^{0} is assumed here to be a curve (polarity inversion line, PIL), possibly made of several pieces.
$-\mathcal{L}(\mathbf{r})=$ field line of B entering D at $\mathbf{r} \in S^{+} . \mathcal{L}(\mathbf{r})$ exits D at the point $\mathbf{M}=\mathbf{M}(\mathbf{r})$ of S^{-}. The mapping $\mathbf{M}: \mathrm{S}^{+} \rightarrow \mathrm{S}^{-}$so defined is called the magnetic mapping of \mathbf{B}.
- Select:
- a reference field B_{r} in D having the same normal component as B on $S\left(B_{r n}=B_{n}\right)$;
- a reference vector potential A_{r} of $B_{r}\left(B_{r}=\nabla \times A_{r}\right)$.
- Let \mathbf{A} by an arbitrary vector potential of B ($B=\nabla \times A$). Then the magnetic helicity of B relative to \boldsymbol{B}_{r} is defined by (Berger \& Field 1984, Finn and Antonsen 1985)

$$
\mathrm{H}\left[\mathbf{B} / \mathbf{B}_{r}\right]=\int_{D}\left(\mathbf{A}+\mathbf{A}_{r}\right) \cdot\left(\mathbf{B}-\mathbf{B}_{r}\right) \mathrm{d} v
$$

- H is a gauge invariant quantity: it does not depend on the choices of \mathbf{A} and \mathbf{A}_{r}.
- Most often, \mathbf{B}_{r} chosen to be the unique potential field B_{π} satisfying $B_{\pi n}=B_{n}$ on S. In that case, the helicity of \mathbf{B} w.r.t. \mathbf{B}_{π} depends only on \mathbf{B} - it is then an intrinsic property of that field - and one set

$$
\mathrm{H}_{\mathrm{rel}}[\mathrm{~B}]=\mathrm{H}\left[\mathrm{~B} / \mathrm{B}_{\pi}\right] .
$$

$H_{\text {rel }}[B]$ is simply called the relative helicity of B.

- Impose the gauge condition (gc, hereafter)

$$
\mathbf{A} \times \mathbf{n}=\mathbf{A}_{\mathrm{r}} \times \mathbf{n} \quad \text { on } \mathrm{S} .
$$

Then the field line helicity of B relative to A_{r} is the function defined on S^{+}by (Berger 1988)

$$
\mathrm{h}\left[\mathbf{B} / \mathbf{A}_{r} ; \mathbf{r}\right]=\int_{\mathcal{L}(\mathbf{r})} \mathbf{A} \cdot \mathrm{d} \mathbf{l} .
$$

- h is invariant under the gauge transforms of A respecting gc (this justifies the notation $\mathrm{h}\left(\mathrm{B} / \mathrm{A}_{\mathrm{r}} ; \mathbf{r}\right)$).
- H and h are related by

$$
\begin{aligned}
& \mathrm{H}\left[\mathbf{B} / \mathbf{B}_{r}\right]=\int_{\mathrm{S}^{+}} \mathrm{h}\left[\mathbf{B} / \mathbf{A}_{r}\right]\left(-\mathrm{B}_{\mathrm{n}}\right) \mathrm{ds}-\mathrm{H}_{\mathrm{r}}, \\
& \mathrm{H}_{\mathrm{r}}=\int_{D} \mathbf{A}_{r} \cdot \mathbf{B}_{r} \mathrm{dv}
\end{aligned}
$$

- Essential property of H and h : if B_{1} and B_{2} have the same topology - meaning here that they can be deformed into each other by ideal MHD motions keeping fixed the positions of the footpoints on S (which implies that $B_{1 n}=B_{2 n}$ on S) then

$$
H\left[B_{1} / B_{r}\right]=H\left[B_{2} / B_{r}\right] \text { and } h\left[B_{1} / A_{r} ; r\right]=h\left[B_{2} / A_{r} ; r\right] \text {. }
$$

2. Topology of B

- The field B is said to have a simple topology if its magnetic mapping \mathbf{M} is continuous.
- In the opposite case, B has complex topology. Generically, \mathbf{M} is discontinuous across some arcs $\Gamma_{j} \subset S^{+}$: if \mathbf{r}_{1} and \mathbf{r}_{2} are located on either side of Γ_{j}, $\mathbf{M}\left(\mathbf{r}_{1}\right)$ and $\mathbf{M}\left(\mathbf{r}_{2}\right)$ are separated by a finite distance.
- The magnetic lines connected to Γ_{j} form a singular surface in D, a so-called separatrix, which either contains a neutral point of \mathbf{B} (where $\mathbf{B}=0$) or is tangent to S along a so-called bald patch $\subset S^{0}$.
- The domain $\mathrm{S}^{+} \backslash\left(\Gamma_{1} \cup \Gamma_{2} \mathrm{U} . ..\right)$ decomposes into N cells $\mathrm{S}_{\mathrm{k}}^{+}$ inside which \mathbf{M} is continuous. We set $\mathrm{S}_{\mathrm{k}}^{-}=\mathbf{M}\left(\mathrm{S}^{+}{ }_{\mathrm{k}}\right) \subset \mathrm{S}^{-}$.

3. Expressing h and H in terms of M

A. Computation of h

- Fix a base point r_{k} in $\mathrm{S}_{\mathrm{k}}^{+}$. Then one gets by applying Stokes theorem to an adequately chosen magnetic surface (see also Aly 2014, Yeates \& Hornig 2014)

$$
\mathrm{h}(\mathbf{r})=\mathrm{h}_{k}+\chi_{k}(\mathbf{r}), \quad \chi_{k}(\mathbf{r})=-\int_{\mathcal{C}\left(\mathbf{r}_{\mathrm{k}, \mathbf{r}}\right)}\left(\mathbf{A}_{\mathrm{rs}}-\nabla_{s} \mathbf{M} \cdot \widetilde{\mathbf{A}_{\mathrm{rs}}}\right) \cdot \mathrm{dl},
$$

where
$-r$ is an arbitrary point of S_{k}^{+}and $h_{k}=h\left(r_{k}\right)$;
$-C\left(\mathbf{r}_{\mathrm{k}}, \mathbf{r}\right)$ is an arbitrary curve connecting r_{k} to r on $\mathrm{S}_{\mathrm{k}}{ }_{\mathrm{k}}$;
$-\widetilde{X}(\mathbf{r})=X(\mathbf{M}(\mathbf{r}))$ and $\mathbf{X}_{\mathrm{s}}=$ component of \mathbf{X} parallel to S.

- When $\partial \mathrm{S}_{\mathrm{k}}^{+}$and $\partial \mathrm{S}_{\mathrm{k}}^{-}$have a common part $\partial_{\mathrm{k}} \subset \mathrm{S}^{0}$ over which the lines are bridging, we can choose \mathbf{r}_{k} on ∂_{k}. Then $h_{k}=0$ and h is fully determined in S_{k}^{+}by

$$
h(r)=\chi_{k}(r) .
$$

- This happens for instance:
- When B has a simple topology (in which case $\mathrm{N}=1, \mathrm{~S}^{+}{ }_{1}=$ $\left.\mathrm{S}^{+}, \mathrm{S}_{1}^{-}=\mathrm{S}^{-}, \mathrm{\partial}_{1}=\mathrm{S}^{0}\right)$.
- For adequate choices of the functions m, n, and p in the following model: in each plane $\mathbf{x}=$ const, \mathbf{B} coincides with the field created by two 2D dipoles, one of moment $m(x) e_{y}$ located at ($\left.y=-d, z=-p(x)\right)$, and one of moment $n(x) \mathbf{e}_{y}$ located at $(y=d, z=-p(x))$. One may then get configurations with the following structures on S :

Green: PIL S ${ }^{0}$
Blue: bald patch
Red: trace of a separatrix

Obviously, both structures allow choosing all the r_{k} on S^{0}.

- If this is not the case, we choose r_{k} on a discontinuity curve Γ_{j} of \mathbf{M} and we compute the constant h_{k} by using the continuity of \mathbf{A} and B on the separatrices. A simple example is as follows.
- Consider an axisymmetric
quadrupolar field in the exterior of
a spherical domain. We first impose $\mathbf{r}_{1}, \mathbf{r}_{2}$, and \mathbf{r}_{3}, to lie on a polarity inversion line, whence

$$
h_{2}=h_{3}=h_{4}=0 .
$$

Next we choose \mathbf{r}_{1} on the separatrix (in red), and note that

$$
h_{1}=h_{a}+h_{c}-h_{b},
$$

where h_{a}, h_{b}, h_{c} can be computed inside the regions 2,3,4 with help from the relation

$$
h(r)=\chi_{k}(r) \quad \text { in } S^{+}{ }_{k} .
$$

B. Helicity

- Using the expression above for h and the relation between h and H , we obtain

$$
\begin{aligned}
\mathrm{H}+\mathrm{H}_{r} & =\sum_{\mathrm{k}=1}^{\mathrm{N}}\left[\mathrm{~h}_{\mathrm{k}} \phi_{\mathrm{k}}+\int_{\mathrm{S}_{\mathrm{k}}^{+}} \chi_{k}\left(-\mathrm{B}_{\mathrm{n}}\right) \mathrm{ds}\right] \\
& =\sum_{\mathrm{k}=1}^{\mathrm{N}}\left[\mathrm{~h}_{\mathrm{k}} \phi_{\mathrm{k}}+\int_{\mathrm{S}_{\mathrm{k}}^{+}}\left(\nabla_{s} \mathbf{M} \cdot \widetilde{\boldsymbol{A}_{\mathrm{rs}}} \times \mathbf{A}_{\mathrm{rs}}\right) \cdot \mathbf{n d s}-\int_{\partial \mathrm{S}_{\mathrm{k}}} \chi_{k} \mathbf{A}_{\mathrm{rs}} \cdot \mathrm{dl}\right]
\end{aligned}
$$

where $\Phi_{\mathrm{k}}=$ magnetic flux through $\mathrm{S}_{\mathrm{k}}\left(\Phi_{\mathrm{k}}>0\right)$.

- The formulae obtained for h and H clearly exhibit the topological invariance of these quantities.
- When B has a simple topology, one gets (Aly 2018)

$$
\begin{aligned}
\mathrm{H} & =\int_{S^{+}}\left[\left(\boldsymbol{\nabla}_{s} \mathbf{M} \cdot \widetilde{\mathbf{A}_{\mathrm{rs}}}\right) \times \mathbf{A}_{\mathrm{rs}}\right] \cdot \mathbf{n} \mathrm{ds}-\mathrm{H}_{r} \\
& =\int^{k j} \varepsilon^{k j} \widetilde{A_{r j}} \widetilde{A_{r l}} \partial_{k} X^{i} d x^{1} d x^{2}-\mathrm{H}_{r} \\
& =\int_{S^{+}}\left[\left(\boldsymbol{\nabla}_{s} \mathbf{M} \cdot \widetilde{\mathbf{A}_{\mathrm{rs}}}-\nabla_{s} \mathbf{M}_{r} \cdot{\widetilde{\mathbf{A}_{\mathrm{rs}}}}^{r}\right) \times{\mathbf{\mathbf { A } _ { \mathrm { rs } }}}\right] \cdot \mathbf{n} \mathrm{ds} .
\end{aligned}
$$

- In the second line, we have used coordinates $\left(x^{1}, x^{2}\right)$ on S^{+}and $\left(\mathrm{X}^{1}, \mathrm{X}^{2}\right)$ on S^{-}, and expressed the magnetic mapping as

$$
\mathbf{M}:\left(x^{1}, x^{2}\right) \mapsto\left(X^{1}\left(x^{1}, x^{2}\right), X^{2}\left(x^{1}, x^{2}\right)\right)
$$

$\varepsilon^{\mathrm{kj}}$ denotes the 2D alternating tensor.

- Third line valid if \mathbf{B}_{r}, too, has a simple topology; $\mathbf{M}_{\mathrm{r}}=$ magnetic mapping of $\mathbf{B}_{\mathrm{r}} ;{\widetilde{\mathbf{A}_{\mathrm{rs}}}}^{r}(\mathbf{r})=\mathbf{A}_{\mathrm{rs}}\left(\mathbf{M}_{r}(\mathbf{r})\right)$.

4. Helicity and Euler potentials

- Assume that both \mathbf{B} and \mathbf{B}_{r} have simple topology.
- For such fields, one can introduce the global Euler representations (Aly 1990, 2018)

$$
\mathrm{B}=\nabla \mathrm{U} \times \nabla \mathrm{V} \quad \text { and } \quad \mathbf{B}_{\mathrm{r}}=\nabla \mathrm{U}_{\mathrm{r}} \times \nabla \mathrm{V}_{\mathrm{r}},
$$

with $U=U_{r}$ and $V=V_{r}$ on S^{+}and all the level contours of V_{r} on S^{+}cutting $\partial \mathrm{S}^{+}$. Clearly, one has

$$
(U, V)(M(r))=(U, V)(r) \quad \text { for } r \in S^{+} .
$$

- Note that one can write for any \mathbf{A} and \mathbf{A}_{r}

$$
\mathbf{A}=\mathrm{U} \nabla \mathrm{~V}+\nabla \mathrm{f} \quad \text { and } \quad \mathbf{A}_{\mathrm{r}}=\mathrm{U}_{\mathrm{r}} \nabla \mathrm{~V}_{\mathrm{r}}+\nabla \mathrm{f}_{\mathrm{r}}
$$

for some functions f and f_{r}.

- Then one has for the line helicity

$$
h\left[B / A_{r} r\right]=f(M(r))-f(r),
$$

with

$$
\begin{array}{ll}
-f(r)=f_{r}(r) & r \in S^{+}, \\
- & f(r)=f_{r}(\mathbf{r})+\int_{C\left(r_{1}, r\right)}\left(U_{r} \nabla V_{r}-U \nabla V\right) . d \mathbf{l}, \\
r \in S^{-} .
\end{array}
$$

- For the helicity (Aly 1990, 2018), one gets

$$
\mathrm{H}\left[\mathbf{B} / \mathbf{B}_{\mathrm{r}}\right]=\int_{\mathrm{S}^{-}} \mathrm{U} \mathrm{U}_{\mathrm{r}}\left(\nabla_{s} \mathrm{~V} \times \nabla_{s} \mathrm{~V}_{\mathrm{r}}\right) \cdot \mathbf{n} \mathrm{d} .
$$

- Again, we have formulae clearly exhibiting the topological invariance of h and H as \mathbf{M} and (U, V) on \mathbf{S} are unchanged when \mathbf{B} is deformed.

5. A formula for the evolution of h

- We consider here a simple situation defined by the following assumptions:
$-B(r, t)$ evolves by keeping a simple topology.
- This evolution is driven by:
- Tangential motions imposed to the plasma on the perfectly conducting boundary S. These motions conserve B_{n}, and then there is some function ζ such that

$$
\mathbf{v}_{\mathrm{s}}=\mathbf{n} \times \nabla_{\mathrm{s}} \zeta / \mathrm{B}_{\mathrm{n}} .
$$

- Non-ideal MHD processes acting in D and described by the term \mathbf{N} in Ohm's law

$$
\mathbf{E}+\mathbf{v x B} / \mathbf{c}=\mathbf{N} .
$$

\mathbf{N} is taken to vanish in a neighborhood of S .

- As B_{n} is preserved, we can select a reference field B_{r}, a reference vector potential \mathbf{A}_{r}, and Euler potentials U_{r} and V_{r} that are all time-independent.
- We choose A_{r} to be of the form

$$
\mathrm{A}_{\mathrm{r}}=\mathrm{U}_{\mathrm{r}} \nabla \mathrm{~V}_{\mathrm{r}} .
$$

- We consider a magnetic line $\mathcal{L}(\mathrm{t})$ which is attached to a given element of matter located at $\mathbf{r}(\mathrm{t})$ on S^{+}and whose footpoint on S^{+}thus moves at the velocity \mathbf{v}_{s}.
- Our aim is to compute the time derivative of the quantity

$$
h(t)=h\left[B(t) / A_{r} ; r(t)\right] .
$$

- Some formulae for $\mathrm{dh} / \mathrm{dt}$ have previously been given by Russell, Yeates, Hornig \& Wilmot-Smith (2015).
- One gets after some algebra (Aly 2018)

$$
\frac{d h}{d t}(t)=\left[U_{r} \frac{\partial(\zeta+\mathcal{N})}{\partial U_{r}}-(\zeta+\mathcal{N})\right]_{\mathcal{L}(t)}
$$

where $[\mathrm{X}]_{\mathcal{L}}=\mathrm{X}[\mathrm{M}(\mathrm{r})]-\mathrm{X}[\mathrm{r}]$,

$$
\mathcal{N}=\int_{\mathcal{L}} \mathrm{cN} \cdot \mathrm{~d} \mathbf{l}
$$

and we have used $\left(U_{r}, V_{r}\right)$ as coordinates on S.

- This formula can be generalized to the case where:
- The boundary motions do not preserve B_{n}, with the velocity thus being of the general form $\mathbf{v}_{s}=\left(\mathbf{n} \times \nabla_{s} \xi+\nabla_{s} \theta\right) / B_{n}$.
- The reference vector potential \mathbf{A}_{r} is time-dependent and not necessarily of the form $A_{r}=U_{r} \nabla V_{r}$.

References

- Aly J-J, 1990, Comp. Phys. Comm. 59, 13-20
- Aly J-J, 2014, J. Phys.: Conf. Ser. 544, 012003
- Aly J-J, 2018, Fluid Dyn. Res. 50, 011408
- Berger MA, 1988, Astron. Astrophys. 201, 355-361
- Berger MA \& Field GB, 1984, J. Fluid Mech. 147, 133-148
- Finn JM \& Antonsen TM, 1985, Comments Plasma Phys. Control. Fusion 9, 111-126
- Russell AJB, Yeates AR, Hornig G \& Wilmot-Smith AL, 2015, Phys. Plasmas 22, 032106
- Yeates AR \& Hornig G, 2014, J. Phys.: Conf. Ser. 544, 012002

