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Abstract	
•  We	present	some	general	considera.ons	on	two	
quan..es	that	are	of	common	use	in	solar	physics:	
the	rela%ve	magne%c	helicity	H	and	the	field	line	
helicity	h	of	a	magne.c	field	B	contained	in	some	
domain	D.		

•  We	show	how	these	two	quan..es	can	be	expressed	
in	terms	of	either	the	magne.c	mapping	of	B	or,	when	
B	has	a	simple	topology,	the	boundary	values	of	two	
pairs	of	Euler	poten.als.	The	well-known	topological	
invariance	of	H	and	h	can	be	immediately	seen	on	the	
formulae	that	are	presented.		

•  We	compute	how	the	field	line	helicity	varies	in	.me	
when	the	plasma	in	D	has	finite	resis.vity	and	the	
footpoints	of	the	magne.c	lines	on	the	boundary	of	D	
are	submiQed	to	shearing	mo.ons.	



1.	Defini.ons	
•  Nota.ons	and	assump.ons:		
– D	=	simply	connected	domain	of	space	bounded	by	the	
connected	surface	S.	n	=	outer	normal	to	S.	

– B	=	smooth	magne.c	field	contained	in	D.	We	assume	
that	(almost)	all	the	magne.c	lines	of	B	have	two	
footpoints	on	S.		

– S+,	S-,	and	S0,	denote	the	parts	of	S	where		-Bn	>	0	
(posi.ve	polarity),	-Bn<	0	(nega.ve	polarity),	and	Bn	=	0,	
respec.vely.	S0	is	assumed	here	to	be	a	curve	(polarity	
inversion	line,	PIL),	possibly	made	of	several	pieces.	

– L(r)	=	field	line	of	B	entering	D	at	r	∈ S+. L(r)	exits	D	at	
the	point		M	=	M(r)	of	S-.	The	mapping	M:	S+	à	S-	so	
defined	is	called	the	magne%c	mapping	of	B.		

	



•  Select:		
– a	reference	field	Br	in	D	having	the	same	normal	
component	as	B	on	S	(Brn=	Bn);	

– a	reference	vector	poten%al	Ar	of	Br	(Br=∇xAr).	

•  Let	A	by	an	arbitrary	vector	poten.al	of	B	
(B=∇xA).	Then	the	magne%c	helicity	of	B	rela%ve	
to	Br	is	defined	by	(Berger	&	Field	1984,	Finn	and	
Antonsen	1985)		

•  H	is	a	gauge	invariant	quan.ty:	it	does	not	depend	
on	the	choices	of	A	and	Ar.	

H !/!! = (!! + !!). (!− !!)dv	.	



•  Most	oben,	Br	chosen	to	be	the	unique	poten.al	
field	Bπ	sa.sfying	Bπn=	Bn	on	S.	In	that	case,	the	
helicity	of	B	w.r.t.	Bπ	depends	only	on	B	–	it	is	then	
an	intrinsic	property	of	that	field	–	and	one	set		

Hrel[B]=H[B/Bπ].	
				Hrel[B]	is	simply	called	the	rela%ve	helicity	of	B.		
•  Impose	the	gauge	condi.on	(gc,	hereaber)	

	A×n	= Ar×n						on	S.	
			Then	the	field	line	helicity	of	B	rela%ve	to	Ar	is	the	
func.on	defined	on	S+	by	(Berger	1988)	

	
	
	
	

	

h !/!!; ! = ! ∙ d!
ℒ !

.	
	



•  h	is	invariant	under	the	gauge	transforms	of	A	
respec.ng	gc	(this	jus.fies	the	nota.on	h(B/Ar;r)).		

•  H	and	h	are	related	by	
	
	
				
•  Essen.al	property	of	H	and	h:	if	B1	and	B2	have	
the	same	topology	–	meaning	here	that	they	can	
be	deformed	into	each	other	by	ideal	MHD	
mo.ons	keeping	fixed	the	posi.ons	of	the	
footpoints	on	S	(which	implies	that	B1n=B2n	on	S)	–	
then		
H[B1/Br]	=	H[B2/Br]			and			h[B1/Ar;r]	=	h[B2/Ar;r].	

H !/!! = h !/!!!! (−B!)ds− H!	,	
	

H! = !! .
!

!!dv.	
	



2.	Topology	of	B	
•  The	field	B	is	said	to	have	a	simple	topology	if	its	
magne.c	mapping	M	is	con.nuous.	

•  In	the	opposite	case,	B	has	complex	topology.	
Generically,	M	is	discon.nuous	across	some	arcs			
Γj⊂S+:	if	r1	and	r2	are	located	on	either	side	of	Γj,	
M(r1)	and	M(r2)	are	separated	by	a	finite	distance.		

•  The	magne.c	lines	connected	to	Γj	form	a	singular	
surface	in	D,	a	so-called	separatrix,	which	either	
contains	a	neutral	point	of	B	(where	B	=	0)	or	is	
tangent	to	S	along	a	so-called	bald	patch	⊂S0.		

•  The	domain	S+\(Γ1UΓ2U…)	decomposes	into	N	cells	S+k	
inside	which	M	is	con.nuous.	We	set	S-k	=	M(S+k)⊂S-.		



3.	Expressing	h	and	H	in	terms	of	M	
A.	Computa.on	of	h	

•  Fix	a	base	point	rk	in	S+k.	Then	one	gets	by	applying	
Stokes	theorem	to	an	adequately	chosen	magne.c	
surface	(see	also	Aly	2014,	Yeates	&	Hornig	2014)		

	
	
					
				where	
–  r	is	an	arbitrary	point	of	S+k	and	hk	=		h(rk);	
– C(rk,	r)	is	an	arbitrary	curve	connec.ng	rk	to	r	on	S+k;	
–  			(r)	=	X(M(r))	and	Xs	=	component	of	X	parallel	to	S.	

       h ! =  h! + !! ! , !! ! = − (!!"
! !!,!

− !!! ∙ !!") ∙ d! , 

X	



•  When	∂S+k	and	∂S-k	have	a	common	part	∂k⊂S0	
over	which	the	lines	are	bridging,	we	can	choose	rk	
on	∂k.	Then	hk=	0	and	h	is	fully	determined	in	S+k	by	

h(r)	=	χk(r)	.	
•  This	happens	for	instance:	
– When	B	has	a	simple	topology	(in	which	case	N=1,	S+1	=	
S+,	S-1	=	S-,	∂1=	S0).		

– For	adequate	choices	of	the	func.ons	m,	n,	and	p	in	
the	following	model:	in	each	plane	x=const,	B	coincides	
with	the	field	created	by	two	2D	dipoles,	one	of	
moment	m(x)ey	located	at	(y=-d,z=-p(x)),	and	one	of	
moment	n(x)ey	located	at	(y=d,z=-p(x)).	One	may	then	
get	configura.ons	with	the	following	structures	on	S:																																																																																																										



		
	
	
	
Green:	PIL	S0																																																																																																																																												
Blue:	bald	patch																																																																																																																																			
Red:	trace	of	a	separatrix	
	
	
	

					Obviously,	both	structures	allow	choosing	all	the	rk	on	S0.		

•  If	this	is	not	the	case,	we	choose	rk	on	a	
discon.nuity	curve	Γj	of	M	and	we	compute	the	
constant		hk	by	using	the	con.nuity	of	A	and	B	on	
the	separatrices.	A	simple	example	is	as	follows.	
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•  Consider	an	axisymmetric	
quadrupolar	field	in	the	exterior	of	
a	spherical	domain.	We	first	impose	
r1,	r2,	and	r3,	to	lie	on	a	polarity	
inversion	line,	whence	

h2=h3=h4=0	.	

				Next	we	choose	r1	on	the	separatrix	
				(in	red),	and	note	that	

h1=ha+hc-hb	,		

				where	ha,	hb,	hc	can	be	computed			
				inside	the	regions	2,3,4	with	help		
				from	the	rela.on		

h(r)	=	χk(r)				in	S+k.	
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B.	Helicity	

•  Using	the	expression	above	for	h	and	the	rela.on	
between	h	and	H,	we	obtain	

	
				where	Φk	=	magne.c	flux	through	S+k	(Φk	>	0).		
•  The	formulae	obtained	for	h	and	H	clearly	exhibit	
the	topological	invariance	of	these	quan..es.	

H+ H! = h!ϕ! + χ!(−B!)
!!!

ds
!

!!!
	

= h!ϕ! + (∇!!.!!"
!!!

×!!").!ds− χ!
!!!!

!!". d!
!

!!!
	

	



•  When	B	has	a	simple	topology,	one	gets	(Aly	2018)	

					
					
•  In	the	second	line,	we	have	used	coordinates	(x1,x2)	
on	S+	and	(X1,X2)	on	S-,	and	expressed	the	magne.c	
mapping	as		

M:	(x1,x2)	↦	(X1(x1,x2),X2(x1,x2)).		
    εkj	denotes	the	2D	alterna.ng	tensor.	
•  Third	line	valid	if	Br,	too,	has	a	simple	topology;				
Mr	=	magne.c	mapping	of	Br;		

     H =  [(
!!

!!!.!!")×!!"] ∙ ! ds− H! 	

= !!"!!"!!! !!!!!!!!!! − H! 	
	

=  [(
!!

!!!.!!"−!!!! .!!"
!)×!!"] ∙ ! ds.	

	

!!"
!(!) = !!" !! ! .	



4.	Helicity	and	Euler	poten.als	
•  Assume	that	both	B	and	Br	have	simple	topology.	
•  For	such	fields,	one	can	introduce	the	global	
Euler	representa%ons	(Aly	1990,	2018)	

B	=∇U×∇V						and						Br	=∇Ur×∇Vr,		
				with	U	=	Ur	and	V	=	Vr	on	S+	and	all	the	level	
contours	of	Vr	on	S+	cuwng	∂S+.	Clearly,	one	has	

(U,V)(M(r))	=	(U,V)(r)				for	r	∈ S+.		
•  Note	that	one	can	write	for	any	A	and	Ar	

	A=U∇V+∇f						and						Ar=Ur∇Vr+∇fr		
			for	some	func.ons	f	and	fr.	



•  Then	one	has	for	the	line	helicity		
h[B/Ar;r]=f(M(r))-f(r),			

				with		
–  				f(r)	=	fr(r)																																																									r∈S+,	

–  				

•  For	the	helicity	(Aly	1990,	2018),	one	gets	

	

• 		Again,	we	have	formulae	clearly	exhibi.ng	the			
				topological	invariance	of	h	and	H	as	M	and	(U,V)			
				on		S	are	unchanged	when	B	is	deformed.		

f ! = f! ! + U!∇V! − U∇V . d!!(!! ,!) ,    ! ∈ S!	.	

H[!/!!] = UU!(∇!V×∇!V!
!!

) ∙ ! ds.	



5.	A	formula	for	the	evolu.on	of	h	
•  We	consider	here	a	simple	situa.on	defined	by	
the	following	assump.ons:	
– B(r,t)	evolves	by	keeping	a	simple	topology.	
– This	evolu.on	is	driven	by:	
•  Tangen.al	mo.ons	imposed	to	the	plasma	on	the	perfectly	
conduc.ng	boundary	S.	These	mo.ons	conserve	Bn,	and	
then	there	is	some	func.on	ζ		such	that	

vs	=	n	x∇sζ		/		Bn	.	
•  Non-ideal	MHD	processes	ac.ng	in	D	and	described	by	the	
term	N	in	Ohm’s	law	

E	+	vxB/c	=	N	.	
			N	is	taken	to	vanish	in	a	neighborhood	of	S.	

	



– As	Bn	is	preserved,	we	can	select	a	reference	field	Br	,	
a	reference	vector	poten.al	Ar,	and	Euler	poten.als	
Ur	and	Vr	that	are	all	.me-independent.		

– We	choose	Ar	to	be	of	the	form		
Ar=Ur∇Vr	.		

– We	consider	a	magne.c	line	L(t)	which	is	aQached	to	
a	given	element	of	maQer	located	at	r(t)	on	S+	and	
whose	footpoint	on	S+	thus	moves	at	the	velocity	vs.		

– Our	aim	is	to	compute	the	.me	deriva.ve	of	the	
quan.ty	

h(t)	=	h[B(t)/Ar	;	r(t)].	
– 	Some	formulae	for	dh/dt	have	previously	been	given																
				by	Russell,	Yeates,	Hornig	&	Wilmot-Smith	(2015).			



•  One	gets	aber	some	algebra	(Aly	2018)	

	

	

				where	[X]L =	X[M(r)]-X[r],		

	

				and	we	have	used	(Ur,Vr)	as	coordinates	on	S.			

•  This	formula	can	be	generalized	to	the	case	where:	
–  The	boundary	mo.ons	do	not	preserve	Bn	,	with	the	velocity	
thus	being	of	the	general	form		vs	=	(n	x∇s	ζ +∇s	θ)	/		Bn	.	

–  The	reference	vector	poten.al	Ar	is	.me-dependent	and	not	
necessarily	of	the	form	Ar=Ur∇Vr	.		

!ℎ
!" ! = !!

! ! +!
!!!

− ! +!
ℒ !

,	

! = c!
ℒ

. d! ,	
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