Absolute Helicity measures

« Generalizing the Poloidal-Toroidal Field Decomposition
» Helicity Flux through boundaries
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Gauss Linking Integral
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The Biot Savart integral (Coulomb gauge) 2001 Cantarella, DeTurck
& Gluck
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So Is helicity a six-dimensional integral,

r a three-dimensional integral?
answer: nerl?her - It rea‘F 1S five

ql m%m§r!g@ﬁbu<s like a double integral, but we can

do this as a single integral over mutual winding.
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2. Or, we can express the helicity as linking between poloidal and
toroidal fields

Linking of Poloidal flux (red) by Toroidal flux (blue)
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Helicity in Open volumes

The helicity is measured relative to that of the
potential field P, where

V x P =0, P-n=B:n.

The result is independent of the field below the
photosphere.

B & Field 84.
Z
P
P P
True Field Reference Field

Equivalently, we set the helicity of the potential
field to zero (and assume helicity is bilinear).
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Absolute Measures of Magnetic Helicity

Several Authors have explored alternative measures of

helicity in open volumes (e.g. Hornig, Prior & Yeates,
Low).

 Alternative Reference Fields
» Unique Vector Potentials
* Field Representations




Alternative Reference Fields

Consider a single coronal flux tube stretching between
two parallel planes occupying a volume ). We have a

choice of two potential fields as reference:

1) the potential field inside V
2) the potential field between the two planes.

The first case Is interesting for piece-wise constant-alpha
force free fields.

The second case gives the sum of mutual winding
numbers between field lines — it Is equivalent to
employing the winding gauge (Prior & Yeates 2014).
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Generalizing the Toroidal-Poloidal
Decomposition to arbitrary simply
connected surfaces

recall for spheres and planes:

[ —2z x V, Cartesian geometry; (8)
| —r x 'V, Spherical geometry.

Then one can show that functions 7" and P (the toroidal and poloidal
flux functions) exist where

Br
Bp

LT (9)
V x LP. (10)

The poloidal and toroidal fields are orthogonal in the sense that

/BT-deS:s:O.
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Helicity as linking of Poloidal — Toroidal Fields

Physical Meaning: Poloidal and Toroidal Fields link each
other, but not themselves. B35, Low 2010

Let

zZ XV planar
r XV spherical

and
B=LT+V x LP

The helicity between planes z = z1 and z = 2z, can be written

H:Q/ET-LP d3z|.

We can write this as

22
H:/ F(z) dz|,
.Zl

F(z) :Q/JCT*JC,P dz duy.




The toroidal potential and field due to a single
oblique flux tube
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The normal component of the curl

The fields Bp and By are determined by the boundary data B,, or J,,. We
can express this idea by defining the normal component of the curl as the
operator

DV =H-V x V. (4)

Next consider its inverse operator D~!: given a scalar function f(z,y) or
f(0,¢) on a planar or spherical surface, we specify that the inverse normal
curl gives a divergence-free vector field parallel to the surface: if V.= D71 f
then

V-V =0; n-v=0,0. (5)

This field is unique: if two fields Vi and Vs both satisfy these equa-
tions then Vo — V1 would be a gradient field, (Vo — V1) = V“¢ with zero
divergence. Thus the two-dimensional Laplacian A i) = 0 where the only
solutions are 1 = constant.

Hence we can write

By D1, (6)
Br = VxD!B,, (7)
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Arbitrary Simply Connected Volumes

Let w be a ‘radial’ coordinate labelling nested surfaces. The

poloidal field will contain all the normal flux. The toroidal field will
contain all the normal current.

The Toroidal Field

On each w surface we define the toroidal field to be the inverse curl of the
normal current:

Br =D 'J,. (32)
The Poloidal Field

We can define the poloidal field as whatever else remains after subtracting
the toroidal field:

Br =B — Br. (34)
This ensures that Bp,, = B,, and Jp,, = 0.
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In non-symmetric volumes the
poloidal field doesn’'t behave

properly!
In particular, the obvious vector potential

P

A=D'B,

gives an unwanted field parallel to the surface, and hence a spurious
extra perpendicular current. We need to add a correction term — a new

toroidal field:
Bp = B—Bg (36)

where Bg is a toroidal field with the same undesired perpendicular current:

DBs = DB =DV x D 'B,,. (37)
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The shape field

The extra toroidal field arising in the poloidal
decomposition can be called the shape field. It is
only non-zero if the curvature is not constant.

Conclusion: The helicity can still be defined as the
linking of poloidal with toroidal fields.

But: there is now an extra linking, of the poloidal field
with the shape field.

Hy =2 / A . B, dr + / A . Bs d*r.
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The Helicity Flux

|H ' ~ ;
Y —Q/E-Bdgi?#—Qj!{AxE-ﬂdzx
dt v E

Here A is the unigue vector potential parallel to
the boundary and divergence free.




Helicity Flux

Consider a set of magnetic loops with endpoints on the solar surface.
The helicity will change when the endpoints move parallel to the
surface:

1. If the endpoints spin, that will twist the magnetic flux above.
2. If the endpoints orbit each other, that will add to mutual winding.

The orbit term involves the velocities at each end V; and Vs, the flux ®, and the vector
potentials generated by the two fluxes (® and —®):

dH
E — Q(D(Al(Xz) . V2 - AQ(Xl) ) Vl)




Vector Potentials in a Plane

The vector potential in a plane at point ?2 due to a flux element at point ?1, flux @, is

(with T=X, — ?2)
K(Qz) 0y " T

a Ez |'T'12|2.

Avoiding monopoles

As there should be no monopoles, the flux @, must return
through the plane — but there is plenty of area in a plane so
the return magnetic field is infinitesimal!
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Vector Potentials on a Sphere

Figure 5. We introduce a net return flux to ensure that there are no magnetic monopoles.
Each tube’s B-field is shared out evenly and directed back into the surface.
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Vector Potenti

B1(9, Qf’) = P <

als on a sphere

’

1 1

Ajq 47 R2

inside footpoint 1

1

T InR? outside footpoint 1

Employing Stoke’s theorem, the vector potential is

Apy(0,6) = (

e’

1+ cosf
2

g}
2rRsin 0 ¢

)



The helicity flux due to uniform rotation of the sphere should be zero.
Suppose the sphere goes through one full turn. The Orbit term gives

(1+ cos 6) &,
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Meanwhile, the footpoint at the pole spins through one turn,
yielding a twist of -1.

The footpoint at co-latitude 8 spins through o¢/27, where

op = (2r Ccos 6)
We could rewrite this in terms of the geodesic deviation

o¢ = (2 —geodesic deviation)

The geodesic deviation is simply 2z (/-cos 6).
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Gauss- Bonnet Theorem

The total curvature K enclosed by a closed
curve on a simply connected surface is

K = 4n(1-geodesic deviation)

Conclusion: in any simply connected
manifold, the return flux should be
distributed according to Gauss curvature.
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Surface vector potentials
for footpoints

The net magnetic flux (or vorticity) through a compact
boundary must be zero. Each footpoint needs
compensating flux.

Distribute the return flux proportional to the
Gauss curvature to correct geodesic deviation
(angle deficits)!

UNIVERSITY OF

EXETER




Self and Mutual Helicity

Figure 2. Two flux tubes extending between two parallel planes. The twist plus writhe of each
individual tube is conserved, as well as the winding number between the two tubes.
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Helicity in Spherical Volumes

In outer spherical volumes, self helicity (twist+writhe) and mutual linking
are not easy to separate!
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Converting mutual to self helicity In
a non-trivial topology
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Figure 4. Before deforming: 7 = 0 and W = —1. Post deformation: 7 = —2 and W = 1.
Hence in both cases H = —®? as expected.
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