Toward real-time inversion of SPRING Stokes observations (WP8.3.2)

Luis Bellot Rubio, Juan P. Cobos Instituto de Astrofísica de Andalucía (IAA-CSIC)

SPRING observations

7. ESTIMATION OF THE EXPECTED DATA RATE OF SPRING

We describe here the expected data rates for one node of the network which follow from the Scientific Requirement Document (SRD).

Combining the science requirements defined in Section 3 of the SRD we arrive at the following specifications: The Sun has to be observed in full-disk mode with a spatial resolution of 1 arc second and a temporal cadence of 10 s in photospheric velocity and intensity as well as in the line-of-sight magnetic field and the full-vector magnetic field. Five spectral lines should be observed with the same temporal cadence at 20 wavelength-bins per line. For a full-disk image of the Sun, a resolution of 1 arc sec can be achieved with a 2048 x 2048 pixel² CCD.

Specifications of the expected observations:

- 2k x 2k camera, 16 bits
- Five spectral lines
- 20 wavelength bins per spectral line
- Cadence: 10 sec
- Full Stokes vector (=4 components)

SPRING observations

Table 3.1: List of observables and the detailed observing parameters as required by different science goals.

S.	Science Goal	Justification	Observables	Observing parameters
No			Req.	
1.	Synoptic	Solar magnetic cycle,	Vector	FOV: Fulldisk
	Magnetic	relation with internal	Magnetometry of	Spatial Res: 1arcsec
	Fields:Long-	flows, solar dynamo	the full solar disk	Spectral Res: 100mA
	term monitoring		in multiple	Temporal Res: Few per day
	of solar		sensitive solar	Spectral Lines: Fe I 6173, Fe I
	magnetic fields		spectral lines	6302, Fe I 5250, Ca II 8542, He I
				10830, Fe I 1.5 micron
2.	AR evolution	Understanding	High cadence	FOV: Fulldisk
	and Transient	magnetic origin of	vector magnetic	Spatial Res: 1 arcsec
	Events: Solar	solar flares, flare	fields of the full	Spectral Res: 100 mA
	Flares, flux	precursors, driving	solar disk in	Temporal Res: one per 10
	emergence and	coronal MHD	multiple spectral	minute
	cancellation,	simulations for space	lines	Spectral Lines: Fe I 6173, Fe I
	Helicity flux, free	weather predictions,		6302, Fe I 5250, Ca I 8542, He I
	energy evolution	estimate of magnetic		10830, Fe I 1.5 micron
	in Active	free energy and		
	Regions	helicity.		
3.	Helioseismolog	Internal flow structure	Velocity maps of	FoV: Full disk + prominences

SPRING observations

	y:Solar internal	and its variation with	the full solar disk	Spatial Res: 1 arcsec
	flows and waves	solar cycle, impact on	in multiple	Spectral Res: 100 mA
	in solar	dynamo action,	spectral lines	Temporal Res: One velocity map
	atmosphere	properties of acoustic		per line per 30 seconds
		and magnetoacoustic		Spectral lines: See Table 1.2
		waves in solar		below**
		atmosphere,		
		subsurface structure		
		of active regions,		
		meridional flows		
4.	Solar	Monitor Sun-as-a-star	Spectrophotomet	FOV: Unresolved Solar light
	Awareness:	spectral properties,	ry of unresolved	Spatial Res: Unresolved
	Total and	magnetic activity and	solar radiation.	Spectral Res: 20 mA
	Spectral solar	its signatures on		Temporal Res: One per day
	irradiance (TSI,	radiative output.		
	SSI)			
5.	Context Imager	Provide	High resolution	FOV: Full disk
	for Upcoming	complementary	imaging in	Spatial Resolution: 0.5 arcsec
	Large Aperture	information over larger	different broad	(after post processing)
	Telescopes.	FOV to support small	and narrow	Spectral Resolution: broad band
		FOV observations by	spectral bands,	(0.25 to few Angstroms)
		future large aperture	including	Temporal Resolution: Few per
		telescopes	continuum	minute or as demanded by
			images	coordinating observer.

Deriving physical parameters from observations

- Full Stokes inversions
- Only photospheric lines
- Simple Milne-Eddington atmosphere
- 1 magnetic component in the pixel (+ filling factor?)
- 9 (10) physical parameters extracted from each line
- Baseline code: MILOS (Orozco Suárez et al. 2010)
 - Used for inversion of Solar Orbiter PHI data on FPGAs
 - Written in IDL
 - Speed: ~150 pixels/s
 - Inverting 4 million pixels with one core would take 7.5 h!!!

Planned solution I

- Code acceleration and optimization
 - Version in C++
 - Profiling
 - Optimization of time-consuming routines (SVD, convolution)
 - Efficient I/O
- We already have preliminary working version: C-MILOS
- Speed goal: 1500-2000 pixel/s (1 core)
- Inversion of full-disk image would take 285 s (8 cores)

Still insufficient to handle 10 s cadence and 3 lines!!

Planned solution II

- Paralellization of C-MILOS
- Based on MPI
- Will allow the use of multi-core workstations, servers or clusters
- 250 cores needed to invert full-disk image in 10 s
- 750 cores needed to invert 3 lines at 10 s cadence

Very expensive from a computational point of view

Planned solution III

GPU implementation of C-MILOS

REAL TIME RAY TRACING FOR PROFESSIONALS

Experience unbeatable performance, power, and memory with the NVIDIA® Quadro RTX™ 8000, the world's most powerful graphics card for professional workflows. The Quadro RTX 8000 is powered by the NVIDIA Turing™ architecture and NVIDIA RTX™ platform to deliver the latest hardware-accelerated ray tracing, deep learning, and advanced shading to professionals. Equipped with 4608 NVIDIA CUDA® cores, 576 Tensor cores, and 72 RT Cores, the Quadro RTX 8000 can render complex models and scenes with physically accurate shadows, reflections, and refractions to empower users with instant insight. Support for NVIDIA NVLink™1 lets applications scale performance, providing 96 GB of GDDR6 memory with

FEATURES

- Four DisplayPort 1.4 Connectors
- > VirtualLink Connector³
- > DisplayPort with Audio
- > VGA Support⁴
- > 3D Stereo Support with Stereo Connector⁴
- > NVIDIA GPUDirect[™] Support
- > Quadro Sync II⁵ Compatibility
- > NVIDIA nView[®] Desktop Management Software
- > HDCP 2.2 Support
- > NVIDIA Mosaic⁶

SPECIFICATIONS

GPU Memory	48 GB GDDR6
Memory Interface	384-bit
Memory Bandwidth	672 GB/s
ECC	Yes
NVIDIA CUDA Cores	4,608
NVIDIA Tensor Cores	576

WP8.3.2 Tasks

- T4. Stokes inversion code. Selection of model atmosphere, inversion setup and data products. Selection of input/output format and implementation of I/O interfaces.
- T5. Stokes inversion code profiling and optimization, with a focus on very time-consuming processes such as singular value decomposition (SVD), Voigt function evaluation, and convolution (FFT vs direct calculation).
- T6. Stokes inversion code parallelization. A parallel version will be developed for execution on multi-core machines (workstations, HPC clusters). This will give us a scalable code capable of inverting the data, provided sufficient computing CPUs are available.
- T7. Towards real-time Stokes inversions. To boost the performance further and achieve near real-time applicability, a solution based on Graphical Processing Units (GPUs) will be investigated. The optimized inversion code will be used to study critical aspects of a GPU implementation, such as data transfer rates, memory allocation, and speed. We will examine the advantages of CUDA versus OpenCL and will select the most appropriate platform for the development of GPU code. A preliminary design for GPU architectures will be proposed based on these studies.

Comments and questions

- Fully calibrated observations are needed for inversion
- Who will develop pipeline(s)?
- What cadence is really needed? Makes a huge difference!
- Use simple diagnostic methods and approximations instead of Stokes inversion? E.g., COG, weak field?
- How to analyze chromospheric lines?
- Data format: are FITS cubes acceptable?
- We do not have test full-disk data except from HMI...