Two-scale analysis of solar magnetic helicity

Axel Brandenburg (CU Boulder, Nordita) Gordon Petrie (NSO), Nishant Singh (Gottingen),

Important for understanding the dynamo:
→ Precursers of ARs and CMEs
→ Opposite helicity at large/small scales?
→ Inside/outside dynamo region (solar wind)

Coronal mass ejections

> important carrier of magnetic helicity

Solar magnetic helicity

- Important indicator for CMEs

 Topological invariant
- Need field extrapolation into a box
 Or is the field turbulent?
- Large-scale vs small-scale mag helicity – Is there an α effect in the Sun

Valori et al. (2016)

Finite volume (FV) $\mathscr{H}_{V} = \int_{\mathcal{V}} (\mathbf{A} + \mathbf{A}_{p}) \cdot (\mathbf{B} - \mathbf{B}_{p}) d\mathcal{V}$
see Eq. (3)- Requires **B** in \mathcal{V} e.g., from MHD simulations
or NLFFF- Compute \mathscr{H}_{V} at one time
- May employ different gauges (see Table 2)Helicity-flux integration (FI) $d\mathscr{H}_{V} = 2 \int_{\partial \mathcal{V}} \left[(\mathbf{A}_{p} \cdot \mathbf{B}) v_{n} - (\mathbf{A}_{p} \cdot \mathbf{v}_{t}) B_{n} \right] dS$
- Requires time evolution of vector field on $\partial \mathcal{V}$
- Requires knowledge or model of flows on $\partial \mathcal{V}$
- Valid for a specific set of gauge and assumptions, see Pariat et al. (2017)

Discrete flux-tubes (DT)

$$\mathcal{H} \simeq \sum_{i=1}^{M} \mathcal{T}_{i} \Phi_{i}^{2} + \sum_{i=1}^{M} \sum_{j=1, j \neq i}^{M} \mathcal{L}_{i,j} \Phi_{i} \Phi_{j},$$

see Eq. (31)

Twist-number (TN)

$$\mathscr{H}\simeq\mathcal{T}\Phi^2$$

see Eq. (32)

- Estimation of the twist contribution to \mathscr{H}
- Requires \mathbf{B} in \mathcal{V}
- Requires a flux-rope-like structure for computing the twist T

Connectivity-based (CB)

$$\mathcal{H} = A \sum_{i=1}^{M} \alpha_i \Phi_i^{2\delta} + \sum_{l,m=1}^{M} \mathcal{L}_{lm} \Phi_l \Phi_m$$

see Eq. (35)

- Requires the vector field on photosphere at one time
- Models the corona connectivity as a collection of *M* force-free flux tubes
- Minimal connection length principle

Approaches to solar magnetic helicity

Review by Valori et al. (2016)

$$\mathcal{H}_{\mathcal{V}} \equiv \int_{\mathcal{V}} \left(\mathbf{A} + \mathbf{A}_{p} \right) \cdot \left(\mathbf{B} - \mathbf{B}_{p} \right) d\mathcal{V}$$

Berger & Field (1984)

 \rightarrow No length scale information

Zhang, Brandenburg, & Sokoloff (2016)

$$H_{\rm M}(k) = \int_{2\pi} \hat{\mathbf{A}}(\mathbf{k}) \cdot \hat{\mathbf{B}}^*(\mathbf{k}) \, k \, d\phi + \text{c.c.}$$
$$kH_{\rm M}(k) = \operatorname{Im} \varepsilon_{ijk} \int_{2\pi} k_i \hat{B}_j(\mathbf{k}) \hat{B}_k^*(\mathbf{k}) \, k \, d\phi$$
$$|kH_{\rm M}(k)| \leq 2E_{\rm M}(k) \qquad \begin{array}{c} \text{gauge-invariant} \\ \text{(periodic} \rightarrow \text{FFT)} \end{array}$$

Background of our approach

- Application to turbulent fields
- Density of linkages (gauge-invariant)

Subramanian & Brandenburg (2006)

• Mean helicity density of mean/fluct fields

$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{\mathbf{A}}\cdot\overline{\mathbf{B}} = +2\overline{\mathbf{E}}\cdot\overline{\mathbf{B}} - 2\eta\overline{\mathbf{J}}\cdot\overline{\mathbf{B}} - \nabla\cdot\left(\overline{\mathbf{E}}\times\overline{\mathbf{A}}\right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{\mathbf{a}}\cdot\mathbf{b} = -2\overline{\mathbf{E}}\cdot\overline{\mathbf{B}} - 2\eta\overline{\mathbf{j}}\cdot\mathbf{b} - \nabla\cdot\overline{\mathbf{e}}\times\mathbf{a}$$

 $e \times a \rightarrow$ advective & turbulent diffusive flux contributions

Dynamos produce bi-helical fields

zero net helicity

Magnetic helicity spectrum

Pouquet, Frisch, & Leorat (1976)

 $g.\Omega \rightarrow u.\omega \rightarrow a.b$

Local technique: 2-point correlation tensor

Real space

$$M_{ij}(\mathbf{r}) = \langle B_i(\mathbf{x})B_j(\mathbf{x}+\mathbf{r}) \rangle$$
Fourier space

$$\begin{pmatrix} \hat{B}_i(k,t)\hat{B}_j^*(k',t) \rangle = \Gamma_{ij}(k,t)\delta^2(k-k'), \\ \hat{B}_i(k,t)\hat{B}_j^*(k',t) \rangle = \Gamma_{ij}(k,t)\delta^2(k-k'), \\ \Gamma_{ij}(k,t) = \frac{2E_M(k,t)}{4\pi k} (\delta_{ij} - \hat{k}_i\hat{k}_j) + \frac{iH_M(k,t)}{4\pi k} \varepsilon_{ijk}k_k, \\ = \begin{pmatrix} (1 - \cos^2\phi_k)2E_M & -\sin 2\phi_k E_M & -ik\sin \phi_k H_M \\ -\sin 2\phi_k E_M & (1 - \sin^2\phi_k)2E_M & ik\cos \phi_k H_M \\ ik\sin \phi_k H_M & -ik\cos \phi_k H_M & 2E_M \end{pmatrix}$$

$$k_x = k\cos \phi_k k_y = k\sin \phi_k k_y =$$

$$\begin{aligned} &2E_M(k) = 2\pi k \operatorname{Re} \left\langle \Gamma_{xx} + \Gamma_{yy} + \Gamma_{zz} \right\rangle_{\phi_k}, \\ &kH_M(k) = 4\pi k \operatorname{Im} \left\langle \cos \phi_k \Gamma_{yz} - \sin \phi_k \Gamma_{xz} \right\rangle_{\phi_k}, \end{aligned}$$

Zhang, Brandenburg, & Sokoloff (2014, ApJ 784, L45)

Inspired by earlier 1-D work.

NOAA 11158

-5×10⁴

 -1×10^{5} 0

20

40

60

Hours

cf. Manolis' question

80

100

2×104

1×10⁴

120

AIA 193 Å 3-Jul-2012 23:04:08.620

- 18 degr south
- but negative hel.
- dominance of LS field

Zhang, Brandenburg, & Sokoloff (2016, ApJ)

Global vector magnetograms

- First constructed from SOLIS/VSM (Gosain+13)
- Same pipeline now used for HMI (Hughes+16)
- Here earlier independent version (Yang Liu)
- 3 x 3600 x 1440 pixels (for 3 CRs)

Brandenburg, Petrie, & Singh (2017, ApJ 836, 21)

Toward global analysis CR2161-2163 patched together (Feb 28-May 20, 2015)

Two approaches:

- Rolling patches in lat. strips, 2-D standard FFT
- Double Fourier transform (Roberts & Soward 1975)

(i) Rolling patches

- Helicity emerges intermittently!
 - Lots of variability
 - Not all are helical
 - Hemispheric sign dep.
- Spectral peak 20 Mm
 - Fractional helicity 10%-40%

(ii) Double Fourier transform

"Sliding" 2-point
$$M_{ij}(\mathbf{x}) = \langle B_i(\mathbf{X})B_j(\mathbf{X}+\mathbf{x}) \rangle$$

$$M_{ij}(\mathbf{X},\mathbf{x}) = \left\langle B_i(\mathbf{X} + \frac{1}{2}\mathbf{x})B_j(\mathbf{X} - \frac{1}{2}\mathbf{x})\right\rangle$$

First Fourier transform

$$\hat{M}_{ij}(\mathbf{X},\mathbf{k}) = \int M_{ij}(\mathbf{X},\mathbf{x})e^{-i\mathbf{k}\cdot\mathbf{x}}d^2x/(2\pi)^2$$

Second Fourier transform (now over X)

$$\widetilde{M}_{ij}(K,k) = \left\langle \hat{B}_i(\mathbf{k} + \frac{1}{2}\mathbf{K})\hat{B}_j^*(\mathbf{k} - \frac{1}{2}\mathbf{K}) \right\rangle$$

Roberts & Soward (1975)

Validation of two-scale technique

Result of two-scale approach

- Sign rule well obeyed
- Fluctuations small over
 1-3 month
- No change of sign at small k

- Concentrated to
 +/- 15 degr
- At active region scale: negative in north, pos in south
 - But no clear evidence of reversal at global scales

Comparison with solar wind data

Matthaeus et al. (1982)

 \rightarrow Should be done with Ulysses data away from equatorial plane 17

Measure 2-point correlation tensor

Taylor hypothesis: $R = R_0 - u_R t$

Change of sign: (i) in latitude, (ii) in scale

Bi-helical fields from Ulysses

Taylor hypothesis Broad k bins Southern latitude with opposite sign Small/large distances Positive *H* at large *k* Break point with distance to larger k 1500 AU⁻¹ " 0.01 Mm⁻¹ 1 AU⁻¹["] 1 μHz 19

Shell dynamos with ~CMEs

Strong fluctuations, but positive in north

To carry negative flux: need positive gradient

Brandenburg, Candelaresi, Chatterjee (2009, MNRAS 398, 1414)

$$\frac{\mathrm{d}\overline{h}_{\mathrm{m}}}{\mathrm{d}t} = +2\alpha\overline{\mathbf{B}}^{2} - 2\eta_{t}\overline{\mathbf{J}}\cdot\overline{\mathbf{B}} - \nabla\cdot\overline{\mathbf{F}}_{\mathrm{m}}$$

$$\frac{\mathrm{d}\overline{h}_{\mathrm{f}}}{\mathrm{d}t} = -2\alpha\overline{\mathbf{B}}^{2} + 2\eta_{t}\overline{\mathbf{J}}\cdot\overline{\mathbf{B}} - \nabla\cdot\overline{\mathbf{F}}_{\mathrm{f}}$$

Sign reversal makes sense!

To carry negative flux: need positive gradient

Conclusions I

- New technique: spectrum (scale dependence)
 from correlation tensor: no *A*, no gauge dep
- Isotropy ok, but inaccurate for k > 3/Mm (l < 2Mm)
 to check with Daniel K Inouye Solar Telescope (DKIST)!
- North-south sign dependence obeyed
- For NOAA 11515: wrong sign explained (?)
 Signature of tilt from α-effect
- Global analysis: Double Fourier transform

Conclusions II

- Need to generalize to spherical harmonics
- Is lack of large-scale helicity a boundary effect?
 - Recall: helicity reversal in solar wind (Brandenburg+11)
- Polar field underestimated?

– Pipin & Pevtsov (2014)