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Quadratic magnetic helicities for thin magnetic tubes

The quadratic helicity χ(2) is de�ned for a magnetic �eld B inside a
bounded domain

Ω ⊂ R3,

where B is tangent to the boundary of the domain. Assume, that magnetic
�eld is represented by a (large) �nite number of magnetic tubes Ωi .

Petr M. Akhmet'ev (IZMIRAN, Russia), Simon Candelaresi (University of Dundee, United Kingdom), Alexandr Yu. Smirnov (IZMIRAN, Russia)Quadratic helicity in MHD 20 November 2017 2 / 25



Quadratic magnetic helicities for thin magnetic tubes

The quadratic helicity χ(2) is well-de�ned by the formula:

χ(2)(B) =
∑
i ,j ,k

Φ2

i ΦjΦkn(Lj , Li )n(Li , Lk)

vol(Ωi )
, (1)

where Li , Lj , Lk is a non-ordered collection of central lines of the (thin)
magnetic tubes Ωi , Ωj , Ωk with magnetic �uxes Φi ,Φj ,Φk trough their
cross-sections.

Petr M. Akhmet'ev (IZMIRAN, Russia), Simon Candelaresi (University of Dundee, United Kingdom), Alexandr Yu. Smirnov (IZMIRAN, Russia)Quadratic helicity in MHD 20 November 2017 3 / 25



Quadratic magnetic helicities for thin magnetic tubes

In each collection of 3 tubes one magnetic tube Ωi is singled out (marked).
In equation (1) n(Lj , Li ), n(Li , Lk) are pairwise linking coe�cients of
central lines of the corresponding magnetic tubes and vol(Ωi ) are volumes
�lled by the magnetic tubes.
The value of formula (1) is not changed with respect to a subdivision of
magnetic tubes into a collection of thinner tubes.
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Quadratic magnetic helicities in MHD

Here we try to answer the following questions:

• Is it possible to use the quadratic helicity as non-linear restrictions in
MHD problems?

• Is it possible to use the quadratic helicity as topological constraints in
magnetic �eld relaxation?
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The Arnold inequality

The following inequality:

U(2)(B) ≥ C |χ(B)|, U(2)(B) =

∫
(B,B) dΩ, (2)

where (., .) denotes the scalar product, χ the magnetic helicity and C a
positive constant, is called the Arnold inequality.
This inequality relates the magnetic energy (on the left hand side) to the
magnetic helicity (on the right hand side). The constant C > 0 depends
not on the magnetic �eld B, but on the geometrical properties of the
domain Ω, which is assumed to be a compact domain supporting B.
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A generalized Arnold inequality

The following inequality is satis�ed:

( π
16

) 2
3
U

1
3

(6)(B)(U(B)( 3
2
))

4
3 ≥ χ(2)(B) ≥ χ2(B)

2Vol(Ω)
. (3)

The right hand side of the inequality (3) is an invariant under a smooth
volume-preserved transformation of the domain Ω;

U(k) =

∫∫∫
|B|kdΩ.
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Quadratic magnetic helicity density

χ(2) = lim
a→+∞

∞∑
k=0

ak

k!

∫∫∫
(A,B)

d2k(A,B)

dτ2k
dΩ, (4)

where τ is the magnetic parameter on magnetic lines, in particular,

d(A,B)

dτ
= (grad(A,B),B). (5)
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Example

Assume that the magnetic �eld contains the closed magnetic line L. The
cyclic covering over this magnetic line is the real line L̃ = (−∞,+∞) with
the period 2π. Assume that (A,B) = h̄ + sin(τ), τ ∈ L̃. Then the �rst
term of the integral (4) is h̄2 + 1

2
, the second term is 1

2
and the quadratic

helicity over L equals to h̄2.
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Example

For last terms in the formula (5) we get:∫
2π

0

(A,B)
d2k(A,B)

dτ2k
dτ =

(−1)k

2π

∫
2π

0

sin2(τ2) dτ2,

1

2π

∫
2π

0

sin2(τ2) dτ2 =
1

2
,

χ(2) = h̄2 +
1

2
+ lim

a→+∞

1

2

∞∑
k=1

(−1)kak

k!
= h̄2.
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Compressibility e�ects on the quadratic helicity χ(2)

Use the square of the average magnetic helicity along a magnetic line
Λ(2)(T ; x). It is de�ned as

Λ(2)(T ; x) =
1

T 2

 T∫
0

(ẋ(τ),A(x(τ))) dτ

2

, (6)

with the magnetic vector potential A of the �eld and the velocity vector
ẋ(τ) = B(x(τ)). The integral is taken along a magnetic �eld line starting
at position x = x(τ = 0).
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Compressibility e�ects on the quadratic helicity χ(2)

The quadratic helicity χ(2) is

χ(2) = lim sup
T→∞

∫
Λ(2)(T ; x) dD, (7)

where D ∈ R3 is a ball of radius r . By Birkho� Theorem the limit in (6)
exists for almost arbitrary x. The velocity ẋ(τ) along the magnetic �eld line
is equivalent to B at position x(τ).
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Compressibility e�ects on the quadratic helicity χ(2)

We now investigate the cases of di�eomorphisms stretching the coordinate
system along and across the magnetic �eld lines assuming a �uid density of
ρ0 = 1 before applying the mapping. For a stretching along the magnetic
�eld lines by a factor of λ, the density changes to ρ = λ−1. B is invariant
under such a transformation because the integral magnetic �ow is invariant
and the cross-section is �xed.
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Compressibility e�ects on the quadratic helicity χ(2)

The total length of the �eld line at parameter τ = T changes, but the
mean of the magnetic helicity density does not, hence (A,B) 7→ (A,B)ρ−1.
So, the function (A,B)ρ−1 is frozen in. We now substitute (A,B) by
(A,B)ρ−1 in equation (6) which adds a factor of ρ−1 in equation (7):

Λ(2)
ρ (T ; x) =

1

T 2

 T∫
0

(ẋ(τ),A(x(τ)))

ρ(x(τ)))
dτ

2

. (8)

However, with ρ also the measure dD changes to ρdD. We get the
following formula for χ(2) in the compressed �uid:

χ(2)
ρ =

∫∫
Λ2

ρρ dD. (9)
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Compressibility e�ects on the quadratic helicity χ(2)

For a stretching across the magnetic �eld lines by a factor of λ along both
directions the density changes as ρ = λ−2. In order to conserve magnetic
�ux across comoving surfaces the magnetic �eld changes according to
λ−2B = ρB. Again, (A,B)ρ−1 is invariant. The integral measure changes
according to λ−2.
In both cases the additional factor of ρ in the two integrands cancel if ρ
does not depend on space. In that case we obtain a quadratic magnetic
helicity that is invariant under (homogeneously) density changing
di�eomorphisms.
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Compressibility e�ects on the quadratic helicity χ(2)

From the changes of χ(2) for general transformations, we can conclude that
χ(2) is not a function of the magnetic helicity χ. If it was true, then for two
�elds with the same helicity, the quadratic helicity would be the same. Here
we construct a simple counter example. Take a �eld B1 with helicity χ1.
Construct a second �eld B2 via a topology conserving transformation of
B1, then χ1 = χ2. If this transformation is not volume conserving, then, in
general, the quadratic helicities are di�erent, i.e. χ1 6= χ2.
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Magnetic force-free con�guration

Let P ⊂ Λ2 be the right triangle (all 3 vertexes on the absolute) on the
Lobachevskii plane Λ2, f : P → S2

+ be the conformal transformation (the
Picard analytic function) of the square onto the upper semi-sphere of the
Rimannian sphere S2. The vertexes a, b, c of P are mapped into points
f (a), f (b), f (c) at the equator S1 ⊂ S2 and we assume that
dist(f (a), f (b)) = dist(f (b), f (c)) = dist(f (c), f (d)) = 2π

3
.

Petr M. Akhmet'ev (IZMIRAN, Russia), Simon Candelaresi (University of Dundee, United Kingdom), Alexandr Yu. Smirnov (IZMIRAN, Russia)Quadratic helicity in MHD 20 November 2017 17 / 25



Magnetic force-free con�guration

Denote by g : Λ2 → S2 the branched cover with rami�cations at
f (a), f (b), f (c), which is de�ned as the conformal periodic extension of f
on the Lobachevskii plane. The unite tangent bundle T (Λ2) is equipped
with the geodesic �ows Bleft on Λ is factorized by the monodromy group of
the covering g . The mapping Tg : TΛ2 → TS2 induces the magnetic �ow
on the Lee group SO(3) with a non-homogeneous Riemannian metric,
which is conformal equivalent to the standard metric by the scalar factor ρ̂.
This factor is the density ρ on the standard sphere S3, which is the double
covering over SO(3).
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Magnetic force-free con�guration

• A magnetic force-free �eld Bleft (in the standard non-homogeneous
sphere (S3, rho) with the total �nite volume Vol =

∫
ρdS3) with the �nite

magnetic energy is well-de�ned as the pull-back by a 12-sheeted branching
covering over the Lorenz attractor by Etienne Ghys and Jos Leys.
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Magnetic force-free con�guration

This covering transforms the standard 3-component Hopf link L ⊂ S3 into
the exceptional trefoil of the Lorenz attractor.
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Magnetic force-free con�guration

• The density function ρ in S3 has an asymptotic exp(z−1) near L, where z
is the distance to L (a huge extremal over the magnetic pinch).
• Quadratic helicity χ(2) of Bleft takes the minimal possible value

χ(2) =
χ2

2Vol
.

• The stereographic projection S3 \ pt → R3 transforms Bleft into a
force-free magnetic �eld with a �nite magnetic energy in non-homogeneous
space R3.
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Numerical calculations of χ(2)
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Quadratic Magnetic Helicity Flow

The quadratic magnetic helicity χ(2) admits a continuous variation in the
case of C 2�small �ows (vector of �ows ∂B

∂t in the domain Ω with its �rst
and second partial derivatives small).
In particular, for α2-dynamos we get: ∂A

∂t = αB; and, assuming rotB = kB,

we have: dχ(2)

dt = 4αkχ(2). This means that the �ow of quadratic magnetic

helicity χ(2) for the magnetic �eld with the k-vector coincides with the �ow
of the square of the helicity χ2.
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Conclusions

• We argue that higher helicity invariants have several properties analogous
to Gauss invariant, which allows to constrain dynamo action. Quadratic
helicity χ(2) is an invariant of the ideal MHD.

• The quadratic helicity of a force-free �eld with a constant magnetic
helicity density satis�es the lower bound in the generalized Arnold
inequality.
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