Mechanism of mean flow generation in rotating turbulence and its relation to inertial wave

Kazuhiro INAGAKI, Nobumitsu YOKOI, Fujihiro HAMBA

Institute of Industrial Science, University of Tokyo

Nov. 21, 2017

Helicity distribution in rotating sphere

 Duarte *et al.*, MNRAS (2016)
 helicity distribution in compressible MHD turbulence

 anti-symmetric sign in north and south

 $\rightarrow \alpha$ effect generates the polar field

radially inhomogeneous

Figure 5. Azimuthally averaged contour plots of kinetic helicity. The top row displays the helicity pattern described in Section 2.1 for models 1 (a) and 4 (b) of Table 1. The bottom row shows two examples of the regime described in Section 2.2 for cases 8 (c) and 11 (d) of the same table.

How about the effects of helicity on velocity field?

Effect of helicity on the energy cascade

- ► André and Lesieur, JFM (1977) → helicity does not affect the energy cascade in fully developed turbulence
- ► Rogers and Moin, PoF (1987), Wallace *et al.*, PoF (1992) → helicity does not correlate with small-dissipation events
- Stepanov *et al.*, PRL (2015) inertial range spectrum

$$E(k) \sim \varepsilon^{2/3} k^{-5/3} (1 - |H^r(k)|)^{-1/3}, \quad H^r(k) = \frac{H(k)}{2kE(k)},$$
$$\frac{1}{2} \langle u'_i u'_i \rangle = \int dk \ E(k), \quad \langle u'_i \omega'_i \rangle = \int dk \ H(k)$$

hindering effect requires high relative helicity

Effect of helicity on momentum transport

Yokoi and Yoshizawa, PoF (1993); RANS model

$$\frac{\partial U_i}{\partial t} = -\frac{\partial}{\partial x_j} U_i U_j - \frac{\partial R_{ij}}{\partial x_j} + \nu \frac{\partial^2 U_i}{\partial x_j \partial x_j} + 2\epsilon_{ij\ell} U_j \Omega_\ell^F$$

$$R_{ij} = \frac{2}{3} K \delta_{ij} - 2\nu_T S_{ij} + \eta \left(\frac{\partial H}{\partial x_j} \Omega_i^A + \frac{\partial H}{\partial x_i} \Omega_j^A - \frac{2}{3} \delta_{ij} \frac{\partial H}{\partial x_\ell} \Omega_\ell^A \right)$$

$$q = (\boldsymbol{u}, \boldsymbol{p}, \boldsymbol{\omega}), \quad q = Q + q', \quad Q = \langle q \rangle$$

$$q = (\boldsymbol{u}, p, \boldsymbol{\omega}), \quad q = Q + q, \quad Q = \langle q \rangle$$

 $R_{ij} = \langle u'_i u'_j \rangle$: Reynolds stress
 $H = \langle u'_i \omega'_i \rangle$: turbulent helicity, $\boldsymbol{\Omega}^A = \boldsymbol{\nabla} \times \boldsymbol{U} + 2\boldsymbol{\Omega}^F$

zero-mean velocity and non-zero helicity and rotation; ${m U}=0, ~~ {m
abla} H, {m \Omega}^F
eq 0$

$$R_{ij} - \frac{2}{3}K\delta_{ij} = 2\eta \left(\frac{\partial H}{\partial x_j}\Omega_i^F + \frac{\partial H}{\partial x_i}\Omega_j^F - \frac{2}{3}\delta_{ij}\frac{\partial H}{\partial x_\ell}\Omega_\ell^F\right) \neq 0,$$

mean-flow generation from zero-mean velocity (Yokoi and Brandenburg, PRE (2016))

Mean-flow generation

Yokoi and Brandenburg, PRE (2016) starting with zero-mean velocity

Evolution of axial mean velocity

8000

$$\Omega^{F} = (0, \Omega^{F}, 0), H(z) \propto \sin(\pi z/z_{0})$$
$$R_{yz} = \eta \frac{\partial H}{\partial z} 2\Omega^{F} \neq 0 \quad \Rightarrow \quad \frac{\partial U_{y}}{\partial t} = -\frac{\partial R_{yz}}{\partial z} \neq 0$$

 Positive (negative) axial mean velocity is generated around positively (negatively) helical region

Distribution of the Reynolds stress

• Yokoi and Brandenburg, PRE (2016)

Evolution of axial mean velocity

top right: Reynolds stress middle: model expression

$$R_{yz} = \eta \frac{\partial H}{\partial z} 2\Omega^F$$

bottom: correlation

Correlation between the Reynolds stress and the model in early stage

Q. How helicity affects the Reynolds stress?

Inhomogeneity of helicity in rotating sphere

Duarte et al. (2016)

inhomogeneous direction of helicity is perpendicular to the rotation axis in the low-latitude region

Numerical simulations

Large-eddy simulation (LES)

$$\begin{aligned} \frac{\partial \overline{u}_i}{\partial t} &= -\frac{\partial}{\partial x_j} \overline{u}_i \overline{u}_j - \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left(2\nu_{sgs} \overline{s}_{ij} \right) \\ &+ 2\epsilon_{ij\ell} \overline{u}_j \Omega_{\ell}^F + \overline{f}_i \end{aligned}$$

Smagorinsky model: $\nu_{sgs} = (C_S \Delta)^2 \sqrt{2\overline{s}_{ij}\overline{s}_{ij}}$ $\Delta = (\Delta x \Delta y \Delta z)^{1/3}, C_S = 0.19$ \overline{q} : grid-scale variables

periodic boundary condition grid size: $128 \times 256 \times 128$ box size: $2\pi \times 4\pi \times 2\pi$ 2nd order finite difference Adams–Bashforth method

initial mean velocity: $\langle \overline{u}_i \rangle_S = 0$

Inagaki et al., PRFluids (2017)

$$\mathbf{\Omega}^F = (\Omega^F, 0, 0), \, H^{GS}(y)$$

Run 1: non-helical, non-rotating Run 2: helical, non-rotating Run 3: non-helical, rotating Run 4: helical, rotating

Numerical simulations

Forcing spectrum $E^{ex}(k) = k^{-5/3}$ for $10 \le k \le 14$, $E^{ex}_H(k) = 2\alpha k E^{ex}(k), \ |\alpha| \le 1$

$$\begin{split} & \langle \overline{u}_i' \overline{u}_i' \rangle_S \, (y=0)/2 = 1 \\ & \langle \overline{f}_i \rangle_S = 0 \end{split}$$

Rossby number $\mathrm{Ro} = \frac{\varepsilon^{SGS}/K^{GS}}{2\Omega^F}(y=0)$

Run 1: $\alpha = 0$, Ro = ∞ Run 2: $\alpha = 0.5$, Ro = ∞ Run 3: $\alpha = 0$, Ro = 0.185 Run 4: $\alpha = 0.5$, Ro = 0.166

initial mean velocity: $\langle \overline{u}_i \rangle_S = 0$

Inagaki et al., PRFluids (2017)

$$\mathbf{\Omega}^F = (\Omega^F, 0, 0), \, H^{GS}(y)$$

Run 1: non-helical, non-rotating Run 2: helical, non-rotating Run 3: non-helical, rotating Run 4: helical, rotating

Generation of axial mean velocity

Run 1: non-helical, non-rotating Run 2: helical, non-rotating Run 3: non-helical, rotating Run 4: helical, rotating

Time average over $20 \le t \le 30$

velocity for Run 4

6

4

2

-2

-4

-6

0

>0

Time averaged axial mean velocity for each run

Turbulent energy

Turbulent helicity

Reynolds stress transport

- $R_{ij}^{GS} = \langle \overline{u}'_i \overline{u}'_j \rangle$ positive gradient around y = 0
 - \Rightarrow destruct the mean flow (eddy viscosity)
 - negative gradient around y = 0
 - \Rightarrow enhance the mean flow

focus on the pressure diffusion

Relationship between the pressure diffusion and helicity

0

Poisson equation for the pressure

$$\begin{split} \nabla^2 \overline{p}' &= -2\overline{s}'_{ab}S_{ab} + \overline{\omega}'_a \Omega_a^A - \overline{s}'_{ab}\overline{s}'_{ab} + \frac{1}{2}\overline{\omega}'_a\overline{\omega}'_a + \frac{\partial^2}{\partial x_a \partial x_b} \left(2\nu_{sgs}\overline{s}_{ab} \right)' \\ \nabla^2 \overline{p}' &\simeq -\ell_p^{-2} \overline{p}' \\ &- \frac{\partial}{\partial y} \left\langle \overline{p}' \overline{u}'_x \right\rangle = \ell_p^2 \frac{\partial}{\partial y} \left[-2 \left\langle \overline{u}'_x \overline{s}'_{ab} \right\rangle S_{ab} + \left\langle \overline{u}'_x \overline{\omega}'_a \right\rangle \Omega_a^A - \left\langle \overline{u}'_x \overline{s}'_{ab} \overline{s}'_{ab} \right\rangle \\ &+ \frac{1}{2} \left\langle \overline{u}'_x \overline{\omega}'_a \overline{\omega}'_a \right\rangle + \left\langle \overline{u}'_x \frac{\partial^2}{\partial x_a \partial x_b} \left(2\nu_{sgs} \overline{s}_{ab} \right) \right\rangle \right] \\ &- \frac{\partial}{\partial y} \left\langle \overline{p}' \overline{u}'_x \right\rangle \simeq \frac{\partial}{\partial y} \left(2\ell_p^2 \langle \overline{u}'_x \overline{\omega}'_x \rangle \Omega_x^F \right) \\ &\simeq \frac{\partial}{\partial y} \left(\frac{2}{3} \ell_p^2 \underline{H}^{GS} \Omega_x^F \right) \\ H^{GS} &= \left\langle \overline{u}'_i \overline{\omega}'_i \right\rangle, \left\langle \overline{u}'_i \overline{\omega}'_j \right\rangle = H^{GS} \delta_{ij}/3 \end{split}$$

diffusion for Run 4

12/17

Model expression for the Reynolds stress

Pressure diffusion

$$\Pi_{ij} = -\frac{\partial}{\partial x_j} \left\langle p' u_i' \right\rangle + (i \leftrightarrow j) = \frac{\partial}{\partial x_j} \left(\ell_p^2 H \Omega_i^A \right) + (i \leftrightarrow j)$$

Reynolds stress transport equation^{*} $B_{ij} = R_{ij} - (2/3)K\delta_{ij}$

$$\frac{\partial B_{ij}}{\partial t} = -\frac{B_{ij}}{\tau} + \frac{4}{3}KS_{ij} + \underline{\Pi}_{ij} + \dots$$
$$\Rightarrow B_{ij} = -2\nu_T S_{ij} + \tau \left[\frac{\partial}{\partial x_j} \left(\ell_p^2 H\Omega_i^A\right) + \frac{\partial}{\partial x_i} \left(\ell_p^2 H\Omega_j^A\right)\right]_D$$

similar to the model of Yokoi and Yoshizawa (1993)

$$B_{ij} = -2\nu_T S_{ij} + \eta \left[\frac{\partial H}{\partial x_j} \Omega_i^A + \frac{\partial H}{\partial x_i} \Omega_j^A \right]_D$$

 $[A_{ij}]_D = A_{ij} - A_{\ell\ell} \delta_{ij}/3$

^{*} Rotta (1951), Launder et al. (1975)

Physical meaning of the pressure flux through helicity

Turbulent kinetic energy equation $K = \langle u'_i u'_i \rangle / 2$

$$\frac{DK}{Dt} = -R_{ij}S_{ij} - \varepsilon - \frac{\partial}{\partial x_i} \left[\left\langle u'_i \frac{1}{2} u'_j u'_j \right\rangle + \left\langle u'_i p' \right\rangle - \nu \frac{\partial K}{\partial x_i} \right]$$

 $\langle u_i'p'\rangle$: energy flux of x_i direction due to pressure (pressure flux) model expression using helicity

$$\left\langle u_i' p' \right\rangle = -2\ell_p^2 H \Omega_i^F$$

 negative (positive) helicity corresponds to positive (negative) axial energy flux

inertial wave; group velocity C^{g} (cf. Davidson (2004))

$$C_i^g = \pm \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right) \frac{2\Omega_j^F}{k} \sim \pm \frac{2\Omega_i^F}{k}, \quad \tilde{u}_i \tilde{\omega}_i^* = \mp k |\tilde{u}_i|^2$$

 negative (positive) helicity corresponds to positive (negative) axial wave packet propagation

Relationship between the pressure flux and inertial wave

Homogeneity is assumed

$$\left\langle u_{i}'p'\right\rangle|_{\Omega^{F}} = -\int d^{3}k \ D_{ij}(\mathbf{k})\frac{h(\mathbf{k})}{2k}\frac{2\Omega_{j}^{F}}{k}, \ \left\langle u_{i}'\omega_{i}'\right\rangle = \int d^{3}k \ h(\mathbf{k})$$

 $D_{ij}(\mathbf{k}) = \delta_{ij} - k_i k_j / k^2$

statistical property of inertial wave

$$\begin{split} \tilde{u}_i \tilde{\omega}_i^* &= \mp k |\tilde{u}_i|^2 \Rightarrow e(\mathbf{k}) = \mp \frac{h(\mathbf{k})}{2k}, \quad \frac{1}{2} \left\langle u_i' u_i' \right\rangle = \int d^3k \ e(\mathbf{k}), \\ C_i^g &= \pm D_{ij}(\mathbf{k}) \frac{2\Omega_j^F}{k} \end{split}$$

$$\Rightarrow \left\langle u_i' p' \right\rangle|_{\Omega^F} = \int d^3k \; e(\mathbf{k}) C_i^g$$

energy flux due to inertial wave

Conclusions

- Axial mean velocity was generated and sustained stating from the zero-mean-velocity configuration
- Mean-flow generation was only observed when both the inhomogeneous helicity and the system rotation exist
- The pressure diffusion significantly contributes to the sustainment of the emerged mean flow.
- The pressure diffusion was expressed as the gradient of turbulent helicity coupled with the angular velocity of the system rotation
- It was shown that energy flux due to the pressure is closely related to the group velocity of inertial wave

References

- L. D. V. Duarte, J.Wicht, M. K. Browning, and T. Gastine, Mon. Not. R. Astron. Soc. 456, 1708 (2016).
- [2] J. C. André and M. Lesieur, J. Fluid Mech. 81, 187 (1977).
- [3] M. M. Rogers and P. Moin, Phys. Fluids **30**, 2662 (1987).
- [4] J. M. Wallace, J.-L. Balint, and L. Ong, Phys. Fluids A 4, 2013 (1992).
- [5] R. Stepanov, E. Golbraikh, P. Frick, and A. Shestakov, Phys. Rev. Lett. 115, 234501 (2015).
- [6] N. Yokoi and A. Yoshizawa, Phys. Fluids A 5, 464 (1993).
- [7] N. Yokoi and A. Brandenburg, Phys. Rev. E 93, 033125 (2016).
- [8] K. Inagaki, N. Yokoi, and F. Hamba, Phys. Rev. Fluids 2, 114605 (2017).
- [9] J. C. Rotta, Z. Phys. **129**, 547 (1951).
- [10] B. E. Launder, G. J. Reece, and W. Rodi, J. Fluid Mech. 68, 537 (1975).
- [11] P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004).