Observation and Modeling of Flareproductive Active Regions of the Sun

Shin Toriumi (National Astronomical Observatory of Japan)

Helicity Thinkshop 3 (2017 Nov 23)

1. Introduction

Flaring ARs and their formation

[Sammis+ 2000]

[Künzel 1960]

1. Introduction

Flaring ARs and their formation

- δ-sunspots [Künzel 1960, Sammis+ 2000]
- Sheared PIL [Hagyard+ 1984, Tanaka 1991]
- Twisted flux tubes [Kurokawa 1987, Leka+ 1996]
- Complex multipolar spots [Zirin & Tanaka 1973]
- etc...

Energy and helicity accumulate through magnetic flux emergence*

This talk: observation and modeling

- Statistical observation to see the trends of flaring ARs with minimum selection bias [Toriumi, Schrijver, Harra, Hudson, & Nagashima 2017 ApJ]
- Flux-emergene simulaitons to find the cause of observed magnetic structures [Toriumi & Takasao 2017 ApJ]

[* see many presentations of this week!]

- Flare events
 - Solar Cycle 24: May 2010 April 2016 (6 years from beginning to declining phase)
 - All \geq M5.0 flares with heliocentric angle $\theta \leq 45 \deg$ (i.e. $\mu = \cos\theta \geq 0.71$)
 - 51 flares (20 X + 31 M-class) from 29 ARs

Data sets

- Optical/UV: SDO/HMI and AIA mtrack-ed data
- SXR: GOES light curves
- CME: SOHO/LASCO
 CDAW

AR properties

Symbol size varies with the GOES level from M5.0 to X5.4.

24 out of 29 ARs (= 83%) show
 δ-sunspots for at least one flare
 OCCURRENCE [Künzel 1960, Sammis+ 2000].

 4 out of 29 ARs (= 14%) violate Hale's polarity rule for at least one flare occurrence, as opposed to <u>~4%</u> for all ARs [e.g., Wang & Sheeley 1989, Khlystova & Sokoloff 2009].

Categorization of flaring ARs [based on Zirin & Liggett 1987] •

Spot-Spot

Quadrupole

Spot-Satellite

Categorization of flaring ARs [based on Zirin & Liggett 1987]

Spot-Spot

Quadrupole

• Categorization of flaring ARs [based on Zirin & Liggett 1987]

Quadrupole

Spot-Satellite

• Categorization of flaring ARs [based on Zirin & Liggett 1987]

• Categorization of flaring ARs [based on Zirin & Liggett 1987]

Spot-Spot

Spot-Satellite

Categorization of flaring ARs

<text><text><text>

Fraction

CME productivity

Spot-spotSpot-satellite57%64%

Spot-satellite is slightly more eruptive. → Mag structure affects the CME production?

Categorization of flaring ARs

Spot-Spot

Quadrupole

Spot-Satellite

Categorization of flaring ARs

• 3D Flux-emergence Simulations (code by Takasao+ 2015)

• 3D Flux-emergence Simulations (code by Takasao+ 2015)

two emerging sections

[ST+ 2014, Fang & Fan 2015]

Spot-Satellite

[[]Linton+ 2005, Cheung+ in prep]

[Fan+ 1998, ST+ 2014]

• Magnetogram + Field Lines $\rightarrow \delta$ -spots with Sheared PIL Spot-Spot Spot-Satellite

Quadrupole

• Magnetogram + Field Lines $\rightarrow \delta$ -spots with Sheared PIL Spot-Spot Spot-Satellite

Quadrupole

Formation of sheared PIL

Quadrupole

- Advection → Stretching → Compression
- Approaching spots transport the mag fields, then drift motion shears them, which are pressed later on.

- Energy storage and flare prediction
 - <u>SHARP parameters</u> predict flares and CMEs well... WHY?
 - 1 calculated from HMI vector magnetogram for each AR

Keyword	Description	Formula	F-Score
TOTUSJH	Total unsigned current helicity	$H_{c_{\text{total}}} \propto \sum B_z \cdot J_z $	3560
TOTBSQ	Total magnitude of Lorentz force	$F \propto \sum B^2$	3051
тотрот	Total photospheric magnetic free energy density	$ ho_{ m tot} \propto \sum \left(oldsymbol{B}^{ m Obs} - oldsymbol{B}^{ m Pot} ight)^2 dA$	2996
TOTUSJZ	Total unsigned vertical current	$J_{z_{\text{total}}} = \sum J_z dA$	2733
ABSNJZH	Absolute value of the net current helicity	$H_{c_{abs}} \propto \left \sum B_z \cdot J_z \right $	2618
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z}^{B_z} J_z dA \right + \left \sum_{z}^{B_z} J_z dA \right $	2448
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371
MEANPOT	Mean photospheric magnetic free energy	$\overline{ ho} \propto rac{1}{N} \sum \left(oldsymbol{B}^{ ext{Obs}} - oldsymbol{B}^{ ext{Pot}} ight)^2$	1064
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto rac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1
shrgt45	Fraction of Area with shear $> 45^{\circ}$	Area with shear $> 45^{\circ}$ / total area	740.8
MEANSHR	Mean shear angle	$\overline{\Gamma} = \frac{1}{N} \sum \arccos\left(\frac{B^{\text{Obs}} \cdot B^{\text{Pot}}}{ B^{\text{Obs}} B^{\text{Pot}} }\right)$	727.9
MEANGAM	Mean angle of field from radial	$\overline{\gamma} = \frac{1}{N} \sum \arctan\left(\frac{B_h}{B_z}\right)$	573.3
MEANGBT	Mean gradient of total field	$\overline{ \nabla B_{\text{tot}} } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B}{\partial x}\right)^2 + \left(\frac{\partial B}{\partial y}\right)^2}$	192.3
MEANGBZ	Mean gradient of vertical field	$\overline{ \nabla B_z } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_z}{\partial x}\right)^2 + \left(\frac{\partial B_z}{\partial y}\right)^2}$	88.40
MEANGBH	Mean gradient of horizontal field	$\overline{ \nabla B_h } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_h}{\partial x}\right)^2 + \left(\frac{\partial B_h}{\partial y}\right)^2}$	79.40
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto \frac{1}{N} \sum B_z \cdot J_z$	46.73
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92
MEANJZD	Mean vertical current density	$\overline{J_z} \propto rac{1}{N} \sum \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y} ight)$	17.44
MEANALP	Mean characteristic twist parameter, α	$\alpha_{\text{total}} \propto \frac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	6.147
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto rac{-\sum B_y B_z}{\sum B^2}$	0.647
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto rac{\sum B_x B_z}{\sum B^2}$	0.366
		-	

[Bobra & Couvidat 2015; also Bobra & Ilonidis 2016, Nishizuka+ 2017]

- Energy storage and flare prediction
 - <u>SHARP parameters</u> predict flares and CMEs well... WHY?

Keyword	Description	Formula	F-Score
TOTUSJH	Total unsigned current helicity	$H_{c_{\text{total}}} \propto \sum B_z \cdot J_z $	3560
TOTBSQ	Total magnitude of Lorentz force	$F \propto \sum B^2$	3051
ТОТРОТ	Total photospheric magnetic free energy density	$ \rho_{\rm tot} \propto \sum \left(\boldsymbol{B}^{\rm Obs} - \boldsymbol{B}^{\rm Pot} \right)^2 dA $	2996
TOTUSJZ	Total unsigned vertical current	$J_{z_{\text{total}}} = \sum J_z dA$	2733
ABSNJZH	Absolute value of the net current helicity	$H_{c_{\rm abs}} \propto \left \sum B_z \cdot J_z \right $	2618
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z}^{B_z} J_z dA \right + \left \sum_{z}^{B_z} J_z dA \right $	2448
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371
MEANPOT	Mean photospheric magnetic free energy	$\overline{ ho} \propto rac{1}{N} \sum \left(oldsymbol{B}^{ ext{Obs}} - oldsymbol{B}^{ ext{Pot}} ight)^2$	1064
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto rac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1
shrgt45	Fraction of Area with shear $> 45^{\circ}$	Area with shear $> 45^{\circ}$ / total area	740.8
MEANSHR	Mean shear angle	$\overline{\Gamma} = \frac{1}{N} \sum \arccos\left(\frac{B^{\text{Obs}} \cdot B^{\text{Pot}}}{ B^{\text{Obs}} B^{\text{Pot}} }\right)$	727.9
MEANGAM	Mean angle of field from radial	$\overline{\gamma} = \frac{1}{N} \sum \arctan\left(\frac{B_h}{B_z}\right)$	573.3
MEANGBT	Mean gradient of total field	$\overline{ \nabla B_{\text{tot}} } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B}{\partial x}\right)^2 + \left(\frac{\partial B}{\partial y}\right)^2}$	192.3
MEANGBZ	Mean gradient of vertical field	$\overline{ \nabla B_z } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_z}{\partial x}\right)^2 + \left(\frac{\partial B_z}{\partial y}\right)^2}$	88.40
MEANGBH	Mean gradient of horizontal field	$\overline{ \nabla B_h } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_h}{\partial x}\right)^2 + \left(\frac{\partial B_h}{\partial y}\right)^2}$	79.40
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto \frac{1}{N} \sum B_z \cdot J_z$	46.73
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92
MEANJZD	Mean vertical current density	$\overline{J_z} \propto \frac{1}{N} \sum \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right)$	17.44
MEANALP	Mean characteristic twist parameter, α	$\alpha_{\rm total} \propto rac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	o.147
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto rac{-\sum B_y B_z}{\sum B^2}$	0.647
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto \frac{\sum B_x B_z}{\sum r^2}$	0.366

[Bobra & Couvidat 2015; also Bobra & Ilonidis 2016, Nishizuka+ 2017]

$$H_{C\text{total}} \propto \sum |B_z \cdot J_z|$$
Total photospheric mag free energy
$$\rho_{\text{tot}} \propto \sum (B^{\text{Obs}} - B^{\text{Pot}})^2 dA$$

Total unaigned ourrant haligitu

Sum of *x*-comp. of norm. Lorentz force

$$\delta F_x \propto \sum B_x B_z dA / \sum B^2$$

3. Modeling Free mag. energy in the corona Energy storage and flare prediction • Free energy in the corona 10000 1000 100 CC = 0.9210 100 1000 10

SHARP parameters in the photosphere

Energy storage and flare prediction

Total unsigned current helicity

$$H_{C\text{total}} \propto \sum |B_z \cdot J_z|$$

Sum of *x*-comp. of norm. Lorentz force

$$\delta F_x \propto \sum B_x B_z dA / \sum B^2$$

- Flare-predictive parameters
 → Strong correlation with free energy
- Non-predictive parameters
 → Almost NO correlation

SHARP parameters in the photosphere can measure the free energy in the corona and thus predict flares accurately.

4. Summary

- Observation
 - All \geq M5.0-class flares for 6 years \rightarrow 51 flares from 29 ARs
 - >80% contain δ -spots, ~15% violate Hale's rule
 - Categorization into four types, and many more...

Toriumi et al. 2017

- Modeling
 - FE simulations $\rightarrow \delta$ -spots with sheared PILs
 - PIL created by advection → stretching → compression
 - Flare-predictive SHARP parameters reflect stored free energy

Toriumi & Takasao 2017

Complexity and interaction of subsurface emerging flux produce flaring ARs

Movie courtesy of M. DeRosa

Thank you for your attention!