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1. Current Status of Observation of
Magnetic Activities of Low-Mass Stars

~ Why does we focus on the Rossby number ? ~



Stellar X-ray luminosity v.s., Rossby number

Since Ly reflects Tcorona, Which is determined by magnetic activity,
we believe that it should be an indicator of stellar magnetic activity

Focus on this regime
(The magnetic activity is directly
reflected in the X-ray luminosity)
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- Stellar X-ray luminosity is strongly dependent on the Ro with focusing on the regime Ro > 0.1
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* The low mass star (F, G, K, and M-type here) has a same or similar Lx - Ro relationship

* The stellar magnetic activity is a function of Ro, not solely the stellar mass, luminosity, & structure



Magnetic field of Low Mass Stars v.s., Rossby number

In addition to the Lx, the information of the B-field is also obtained:
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— Strength of Bie < Ro14
mean-field (Vidotto+14)
— Energy of sz X Ro-2.3
Bp-component  (qo0,15)
— Energy of B¢2 o< Ro-3.0
Bo-component (see+15)

* All the B-field components become weaker
with the increase of the Ro

* Ro-dependence has been long known (e.g., Noyes 192
+84; Brandenburg +98) but is not fully-resolved
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2. The Ro-dependence of Convective MHD Dynamo
in a Simplified Semi-global Simulation

Our tool for capturing the essence of the physics
of the Ro-dependence of the convective dynamo




Semi'gIObaI Dynamo Model (see YM & Sano 2016, similar to Bekki-san’s model)

We solve global structure in the depth direction but assume periodicity (local) in the horizontal direction
@Numerical Setting : strongly-stratified atmosphere modeling the solar CZ

(2) Control Parameter : angular velocity (Q)
10°

(&)

* density contrast = 700
* covering over the layer of

g:' 1“_‘ ? |:IIl(__)(_ll,'1:| _______ Py F |.._. ; -.- ] 0-71RSUn < r < 0-99Rsun
IR — |
>l * no mean-flow and thus no Q-effect
=10
= YM&Sanol6 By changing O, Ro-dependence is studied
0 ] ] ]
%0 0.2 0.4 0.6 0.8

-: ."" (1 (WA

e Basic eq : Compressible MHD [rotating coordinate]

e 1-layer polytrope [convection zone only]
aspect ratio - Ly/L, =L,/L, = 4, Q is antiparallel to g
non-D parameter : Pr=12, Pm =2, Ra = 3.6x107
polytropic index - 1.49 (super-adiabaticity 6=10-3)

e Boundary Condition (horizontally periodic)

- B-field = * CZsurface - Open Boundary
CZ bottom - Perfect Conductor

- u-field = * stress-free at CZ surface and bottom

- constant de/dz at the bottom - driving convection

—

dynamo activity in the strongly-stratified convection

NxxNnyz - 2 563




Response of Turbulent Convection to the Change of O

Surface distribution of the convective velocity for the models with the different Q

YM&Sano1l8 in prep.
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Ro-dependence of Turbulent Convective Dynamo@
Depending on the Rossby number, the dynamo properties also change:
e time-evolution of €mag e distribution of the vertical field (Bz) @ CZ surface
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¢ High Ro model:

- turbulent B-field becomes dominant
- weak large-scale B-field grows initially
but is not sustained and decays with time]

e Low Ro model:

- strong large-scale B-field grows and e < '
is sustained for sufficiently long-time e that model 4 "v'" :

- turbulent and large-scale fields co-exist
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There exists a critical Ro for the YM&Sanol6
successful large-scale dynamo - Rocrit ~ 0.015-0.04 YM&Sanol8 in prep.



Ro-dependence of Turbulent Convective Dynamo@

Presence of the large-scale component can be confirmed from TD diagrams:  ymgsano18 in prep.

e Time-depth diagram for {B:) 0
* High-Ro model :

0.4

(Bp) starts to grow, but decays as t passesh\zo.6

* Low-Ro model : 08
(Bn) grows and is then maintained 10
Kapyla+12 (see also, Warnecke+14)
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The mechanism which determines the success or failure of dynamo seems to be common
in both global and our semi-global models because of the similar Rocrit.



Ro-dependence of Turbulent Convective Dynamo@

One interesting outcome : spontaneous formation of surface magnetic structure ym&sano16
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magnetic energy (B, & By) peaks at the box size * common in the dynamo active phase of all the models



3. Mean-field Model Coupled with the DNS:

- How Does the “Ro” impact on the
Success and Failure of the large-scale Dynamo ? -



How “Ro” impacts on the success and failure of dynamo ?

e Summary of our MHD simulations - consistent with
- High Ro model : failed dynamo global dynamo model

Low Ro model : successful large-scale dynamo (Rocit = 0.015 ~ 0.04)

What is the “physical difference” between High Ro and Low Ro models ??

¢ Mean-Field Dynamo Equation (skip the introduction and derivation) -
- Strong theoretical framework studying the large-scale dynamo in the turbulent flow:

OB (c.f., Krause & Radler 1980)
— =V X (u x B — nyJ),
ot smoothing

, | mean-field decomposition approximation

u= <u> tu',B= <B> + B’ Mean-Field (MF)
Dynamo equation

no mean-flow

a;t — Vx| ><f3 ) + & — 10V X (B)]

ntV X <B> (simplest form)

|
‘—» turbulent a-effect . induction of mean B-field )

. turbulent diffusion - diffusion of mean B-field
Our strategy is to

determine, from the simulation results, a(z) = -1, H m(z) =T c<<U§>> ;
(see YM & Sano 14b for details ) (tc = 2nHpluy)



Profiles of Dynamo Coefficients and Strategy for the Analysis

* Profiles of turbulent a-effect are similar in all the models except the top CZ | Ro=0.09 (model 1)

* turbulent diffusion effect becomes smaller with the increase of the Q
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With these coefficients, two-types of analyses are possible
Mean-Field (MF) Dynamo equation:
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Ro =0.015 (model 3)
(x10~%) top CZ Ro = 0.005 (model 4)
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@ Linear Analysis

- Dynamo
= Instability of MFD eq.

- Compare the growth rate

2L =V x [(u) x (BY + & — oV x (B))
& =a(B) =V x (B)

21n11sqns

(@ Non-Linear Analysis

- with physics-based model of
non-linear quenching effect [a = a(B)]

- Compare the non-linear behavior




Local Linear Analysis and Dynamo Growth Rate

® \When plane wave perturbation « exp[i(kr - wt)] is added, the dispersion equation is obtained :
asm?+ aim + ao=0 Results of MHD simulation

Caz=1 T

< a1 =2ink? (a2-type dynamo)
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The results of the linear analysis is
consistent with the early evolutionary stage of the DNS

_1 ® Growth rate as a function of the depth

Ro =0.09 (model 1) bottom CZ
Ro =0.04 (model 2)
Ro = 0.015 (model 3)
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- All the models are linearly unstable to the dynamo both in the top and bottom CZ
* The growth rate is larger in the model with the smaller Ro (higher rotation)
* The dynamo unstable region is broader in the model with the smaller Ro (higher rotation)



MHD simulation v.s. Non-Linear Evolution of MFD model

MF Dynamo equation . + nonlinear a-quenching ‘°°f"§r§3§g”n?§;?an 05)
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with gt = a<B> - mv A <B> (a-effect is suppressed with the increase of the B-field)
e Results of our MHD simulation ~® Results of MF simulation + quenching
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This suggests that the balance between turbulent a-effect and turbulent diffusion
determines the success and failure of the large-scale dynamo at least in our simulation.



Extension of the MF Model coupled with the DNS to 3D :

Surface structure formation may be also in the MF framework:

* Mean-field dynamo equation :
0(B)
3 ¥ X (u) x (B) + & —noV x (B)]
& = a(B) —n,V x (B)

» Just solve mean induction equation (in the vector
potential form) in 3D in the similar way as the 1D.

* no flow field except the given turbulent a and n:

|
-2 . -~ >

1.0v

<
The dynamo-generated B-fiel

N €

o

~ @ | Surface structure formation may be a natural outcome
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See, Jabbari+17 for

the study of the

similar surface

structure formation

in the forced-MHD
ulence

(Bz component) organlzed spontaneously in the upper CZ.
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Why Does the High-Ro model fail to sustain the Dynamo ?

- non-linear effect is controllable in the MFD model °7
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Even without the non-linear quenching
effect, the dynamo in the high Ro model decays.

This implies that the convection structure in the
High Ro model is unstable locally, but is stable
globally to the dynamo.
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A mechanism of the surface magnetic structure evolution

Based on the linear theory, we interpret the mechanism of the surface magnetic structure formation.

* The growth rate is higher and the unstable wavelength is shorter in the upper CZ

@the shorter A mode grows 107" | | | | | |
initially in the upper CZ Ro=0.09 (model 1) bottom CZ
Ro =0.04 (model 2)
@the Ionge( A mode. grows ) 102 Ro = 0.015 (model 3)
gradually in the mid-CZ and =
then propagates upward NE

-3
(3)Finally, the band-like structure 10
of the B-field is developed in
the upper CZ
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Summary

* "Ro"” is a key for studying the stellar dynamo
both observationally and theoretically

* MHD simulation - Roit = 0.015 ~ 0.04 for the successful large-scale dynamo
- turbulent a-effect seems to depend little on Q
- turbulent diffusion decreases with the increase of O

- the dynamo behavior is controlled by the relationship bet. a and n:

* Mean-Field Dynamo Model Coupled with the DNS:

- Properties of the large-scale dynamo including the surface
magnetic structure formation can be reproduced qualitatively

Results of our MHD simulation _Results of MF Dynamo simulation
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Our large-scale dynamo in the Ek - RaEk4/3 plane

Bushby et al. (2017) parametrically studied the success and failure of the large-scale dynamo:
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