THOMAS KALLINGER ANOTHER OBSERVERS POINT OF VIEW ON STELLAR GRANULATION

THE SOLAR SIGNAL

SOHO/VIRGO

"granulation" parameters

т... time scale σ ... amplitude $\boldsymbol{\zeta}$... normalisation constant

HARVEY'S MODEL ZOO

HARVEY'S MODEL ZOO

the tool ...

MultiNest
Feroz et al. 2009

... Bayesian Nested Sampling Algorithm

- probability distributions for the parameters
- global evidence for the fit

				Gaussian			1st component			2nd component		
	$\ln(z/z_0)$	p	P_g	$v_{\rm max}$	σ	a_1	\boldsymbol{b}_1	c_1	a_2	b_2	c_2	
Α	-1587.7	< 10 ⁻²⁰⁰	5.4(2)	30.38(02)	13.1(2)	560(12)	2.3(1)	2*				
в	-255.7	$\sim 10^{-111}$	4.8(3)	35.7(3)	5.1(2)	624(6)	23.7(2)	4*				
С	-75.8	$\sim 10^{-33}$	5.5(3)	34.5(2)	6.0(1)	606(6)	22.5(2)	2/4*				
D	-243.4	$\sim 10^{-102}$	5.1(3)	35.2(2)	5.7(2)	601(28)	20.8(4)	3.7(1)				
Е	-1592.4	< 10 ⁻²⁰⁰	5.4(2)	30.42(02)	13.2(2)	571(15)	2.3(2)	2*	31(4)	34.1(6)	2*	
F	-1.7	0.166	5.5(2)	33.8(4)	6.1(2)	466(14)	9.4(5)	4*	399(19)	31.9(1)	4*	
G	-36.6	$\sim 10^{-16}$	5.7(2)	33.9(2)	6.4(2)	352(26)	8.5(9)	2/4*	502(18)	25.7(6)	2/4*	
н	-0.1	0.833	5.6(3)	33.5(5)	6.1(3)	470(35)	9.7(6)	3.6(3)	365(59)	35.8(3)	4.2(2)	

Kallinger et al. (2014)

the winner is...

2 component model F and H

i=1,2 ... 1 or 2 components

posterior distributions

Bayesian analysis tells us...

- the original Harvey model is obsolete
- reliably fitting a is difficult (even with the long Kepler time series)
- a simple super-Lorentzian works for ALL stars and gives reliable parameters

ENERGY PARTITION

 \int spectrum \Leftrightarrow variance of the time series

pulsation energy (A²_{PULS})

$$A_{\rm PULS}^2 = \int {\rm Gaussian} = \sqrt{2\pi} P_g \sigma$$

granulation energy (A²_{GRAN})

$$A_{\rm GRAN}^2 = \sigma_1^2 + \sigma_2^2$$

ENERGY PARTITION

 $A_{GRAN} \thicksim A_{PULS}^{0.86}$

dependence on surface gravity (g) and mass (M)

 $A_{\text{GRAN}} \approx g^{-1/2} M^{-1/4}$

 $\mathsf{A}_{\mathsf{PULS}} \approx g^{\text{-}2/3}\mathsf{M}^{\text{-}1/3}$

DEPRESSED DIPOLE MODES

IMPLICATIONS FOR FUNDAMENTAL PARAMETER ESTIMATES

TIMESCALE TECHNIQUE

A NEW WAY TO MEASURE SURFACE GRAVITY

AUTOCORRELATION TIMESCALE

AUTOCORRELATION TIMESCALE

WORKS ALSO FOR "NOISY" STARS

ACF technique: $\log g = 4.39 \pm 0.04$

spectroscopy: loç

large potential for future missions (e.g. TESS)

MODE LIFETIMES ON THE RGB

RED GIANT PEAKBAGGING

large number of modes

due to mixed nature of nonradial modes the total number of modes rapidly exceeds 100

rotationally split modes

rotation splits nonradial modes into multiplets with an a priori unknown structure (single peak/duplet/triplet for l=1 modes)

lifetime effects

is a more resolved or not? does a peak belong to a poorly resolve Lorentzian profile or is it a individual mode?

mode identification

unknown spherical degree

mode significance

is a peak due to noise?

for thousands of star me automatic approach

I SPARE YOU THE DETAILS (BUT ITS COMPLICATED)

L = 0 AND 2 MODES

APOKASC SAMPLE

ν_{max} (μHz)

LINE WIDTHS IN THE CENTRE OF THE POWER EXCESS

TEMPERATURE SCALING

 $\Gamma(v_{max}) \sim T_{eff}^{4.8}$

 $\Gamma(v_{max}) \sim T_{eff}^{3.8}$

FREQUENCY DEPENDENCE

NON-RADIAL MODES

APOKASC SAMPLE

~2800 RGB stars with v_{max} > 30µHz

THEORETICAL – OBSERVED

