Inverse transfer of Magnetic Energy in a decaying MHD system

I.T.A. Uni-Heidelberg Kiwan Park

■ Large & small scale B field in space

• Plasma & Magnetic field in space

Their mutual interactions, ubiquitous phenomena:

 \rightarrow Evolution of B-field, constraint of Plasma

• Role of B-field in plasma?

- Lorentz force constrains plasma

- Stabilization or destabilization of a plasma system Pinch, Kruskal-Schwarzschild instability...
- Transport of angular momentum (axisymmetric system) Braking fast spinning collapse or making accretion continue
- Source of kinetic & thermal energy Magnetic reconnection

-...

* But, B-field is not a prerequisite for the evolution of a plasma system

■ Large & small scale B field in space

- Origin of B-field?
- Cosmological model (Primordial & Astrophysical model)
 - 1. Primordial model
 - a. When conformal invariance of EM fields was broken. (Inflation, Turner & Widrow 1988)
 - b. Through cosmic phase transition Electro-Weak Phase Transition (EWPT), Quantum Chromo Dynamics transition (QCD) (Grasso & Rubinstein 2001)
 - 2. Due to Plasma fluctuations (Astrophysical model) Biermann battery (Biermann 1950), Harrison effect (Harrison 1970)

■ Large & small scale B field in space

• Requirements of LSD & SSD?

- LSD

Helicity, Differential Rotation, Magneto-Rotational Instability \rightarrow External forcing source

- SSD

No instability, no shear \rightarrow Forced with nonhelical field

Question

- 1. Is LSD impossible without these specific forcing sources?
 - Dynamo theory: Impossible

But some theories and simulations suggested and reported the possibility of LSD in a decaying MHD system.

- Olesen 1997, Ditlevsen et al. 2004, Brandenburg et al. 2015, 2017,

J. Zrake 2014, 2016, Park 2017a, 2017b

2. How can we explain LSD?

Energy Spectrum in a decaying MHD system

- Simulation setting

Ephemeral supply of E_V & E_M

Decaying (e.g. Supernovae etc.)

Energy Spectrum in a decaying MHD system • NonHelical magnetic energy

Energy Spectrum in a decaying MHD system <u>Helical</u> magnetic energy

• How can we explain?

(1) Helical case - α effect

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times \langle \mathbf{u} \times \mathbf{b} \rangle + \eta \nabla^2 \overline{\mathbf{B}}$$
$$\Rightarrow \nabla \times \alpha \overline{\mathbf{B}} + (\eta + \beta) \nabla^2 \overline{\mathbf{B}}$$

$$: \boldsymbol{\alpha} \sim \int \langle \mathbf{j} \cdot \mathbf{b} \rangle - \langle \mathbf{u} \cdot \boldsymbol{\omega} \rangle \, \mathrm{d}\tau \neq 0$$

(2) NonHelical case? - No α effect $\Rightarrow \overline{B} \rightarrow 0$ But, $\overline{B}(t) \neq 0$,

■ Analytic solution

1. Helical initial E_{M0}

$$\begin{split} \bar{A} \cdot \left(\frac{\partial \bar{B}}{\partial t} = \nabla \times \alpha \bar{B} + (\beta + \eta) \nabla^2 \bar{B}\right), \bar{B} \cdot \left(\frac{\partial \bar{B}}{\partial t} = \nabla \times \alpha \bar{B} + (\beta + \eta) \nabla^2 \bar{B}\right) \\ \Rightarrow \begin{cases} 2H_{ML} = (2E_{M0} + H_{M0})e^{2\int(\alpha - \beta - \eta)d\tau} - (2E_{M0} - H_{M0})e^{-2\int(\alpha + \beta + \eta)d\tau} \\ 4E_{ML} = (2E_{M0} + H_{M0})e^{2\int(\alpha - \beta - \eta)d\tau} + (2E_{M0} - H_{M0})e^{-2\int(\alpha + \beta + \eta)d\tau} \\ 4E_{ML} = (2E_{M0} + H_{M0})e^{2\int(\alpha - \beta - \eta)d\tau} + (2E_{M0} - H_{M0})e^{-2\int(\alpha + \beta + \eta)d\tau} \\ \sum_{k=0}^{\infty} \sum_$$

time (Helical forcing \rightarrow free decaying)

Analytic solution

2. Nonhelical initial E_{M0}

• Statistical method for the ideal MHD system a. 2D MHD (Fyfe & Montgomery 1976)

(1) <u>Conservation</u> E, $\langle \mathbf{u} \cdot \mathbf{B} \rangle$, $\langle \mathbf{A}^2 \rangle$ (stationary system)

(2) Gibbs distribution function

$$Z_0 \exp\left[-(\alpha E + \beta \langle \mathbf{u} \cdot \mathbf{B} \rangle + \frac{\gamma \langle \mathbf{A}^2 \rangle}{2})\right]$$
(3) $E_M = \left(\alpha - \frac{\beta^2}{4\alpha} + \frac{\gamma}{k^2}\right)^{-1}$

(4) With $\beta = 0$ (P = 0, No cross helicity) and $\gamma < 0$ $E_M = \frac{1}{\left(\alpha - \frac{|\gamma|}{k^2}\right)} \rightarrow E_{M, peak}$ at $k_{min} \leftarrow$ Inverse transfer of E_M .

b. 3D MHD (Frisch et al. 1975)

*** Valid for a decaying MHD system? Assumption is not valid.**

• Scaling invariant method (Olesen 1997)

$$\frac{\partial B}{\partial t} = \nabla \times \langle \mathbf{u} \times B \rangle + \eta \nabla^2 B$$

(1) <u>Scale invariants</u> : $\mathbf{r} \rightarrow l\mathbf{r}, \mathbf{t} \rightarrow l^{1-h}\mathbf{t}, l^{h}\mathbf{u}, l^{h}\mathbf{b}, \dots$

$$\rightarrow E_{V,M}(k/l, l^{1-h}t) = E_{V,M}(k, t)$$

(2) Assuming $E_{V,M}(k,t) \rightarrow k^{-1-2h} \psi_{V,M}(k,t)$

$$\rightarrow k \frac{\partial \psi_{V,M}}{\partial k} + (h-1)t \frac{\partial \psi_{V,M}}{\partial t} = 0$$

$$(3) E_{V,M}(k,t) \to k^{-1-2h} \psi_{V,M}(k^{1-h}t) \text{ where } k^{1-h}t = const.$$

If $1-h > 0 \to \text{Inverse transfer of } E_{V,M}(k,t).$

(4) $\int E_{V,M}(k) dk = E_{V,M}$? Unreliable... (Ditlevsen et al. 2004)

- Can we use another intuitive or theoretical model to explain the inverse transfer of nonhelical E_M in a decaying MHD system?
- Field structure model, α theory, Qaasi Normal approx.

• Field Structure model

Nonhelical B field

• Dissipation effect

Nonhelical B field

•Helical Field effect

 $\langle \mathbf{u} \cdot \boldsymbol{\omega} \rangle < \mathbf{0} \rightarrow \langle \mathbf{A} \cdot \mathbf{B} \rangle > \mathbf{0} \Rightarrow \alpha^2 \text{dynamo}$

Resuming the analytic solution for the nonhelical

• EDQNM (Eddy Damped Quasi Normalized Markovian approx.)

$$\frac{\partial E_M(k)}{\partial t} = -\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{p^2}{r} z(1-x^2) E_M(r) E_M(k)$$

$$-\int dp \, dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{r^2}{p} (y + xz) E_V(p) E_M(k)$$

$$+\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{k^3}{pr} (1+xyz) E_V(p) E_M(r)$$

$$\theta_{kpr}^{\nu\eta\eta}(t) = \frac{1 - e^{-\int \left(\nu p^2 + \eta k^2 + \eta r^2 + \mu_{kpr}\right)dt}}{\nu p^2 + \eta k^2 + \eta r^2 + \mu_{kpr}} \overrightarrow{p} \qquad \overrightarrow{cos^{-1}x} \overrightarrow{r}$$
(triad relaxation time)
$$k = p + r \qquad \overrightarrow{cos^{-1}z} \qquad \overrightarrow{k} \qquad 24$$

$$p \sim r \gg k$$

$$\eta \rightarrow 0, p \sim r \gg k = 1$$

$$\theta_{kpr}^{\nu\eta\eta}(t) = \frac{1 - e^{-\int (\nu p^2 + \eta k^2 + \eta r^2 + \mu_{kpr})dt}}{\nu p^2 + \eta k^2 + \eta r^2 + \mu_{kpr}} \rightarrow \frac{1}{\nu p^2}$$

$$\frac{\partial E_M(k,t)}{\partial t} = -\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{p^2}{r} z(1 - x^2) E_M(r) E_M(k)$$

$$-\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{r^2}{p} (y + xz) E_V(p) E_M(k)$$

$$+\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{k^3}{pr} (1 + xyz) E_V(p) E_M(r)$$

$$\frac{\partial E_M(k,t)}{\partial t} \sim \frac{1}{\nu p^4} E_V(p) E_M(p)$$

$$\rightarrow E_M(k,t) \sim \int \frac{1}{\nu p^4} E_V(p) E_M(r) d\tau (k=1)$$

 $\mathbf{p} \sim \mathbf{r} \gg \mathbf{k}$

$$\frac{\partial E_M(k,t)}{\partial t} = -\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{p^2}{r} z(1-x^2) E_M(r) E_M(k) -\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{r^2}{p} (y+xz) E_V(p) E_M(k) +\int dp dr \theta_{kpr}^{\eta\eta\nu}(t) \frac{k^3}{pr} (1+xyz) E_V(p) E_M(r) \sim 0$$

 \rightarrow No inverse transfer from $E_V(p)E_M(r)$

If $\nu = \eta$ (p_{r_M} = 1, Son1999)

Summary

- 1. Inverse transfer of E_M in a decaying MHD system
- 2. Helical E_M : α effect
- **3.** Nonhelical E_M:
 - Statistical method: conserved system variables
 - Scaling invariant method:

 $E_{M}(k, t) = k^{-1-2h} \psi_{V,M}(k^{1-h}t), \ k^{1-h}t = const.$

- 4. Field structure from magnetic induction equation $-\mathbf{u} \cdot \nabla \mathbf{B}, \ \mathbf{B} \cdot \nabla \mathbf{u}$
- 5. EDQNM

 $p, r \rightarrow k (p + r = k), \ \theta_{kpr}^{\nu\eta\eta}(t), x, y, z \Rightarrow E_{M}(k, t)$