Seismic diagnosis from gravity modes strongly affected by rotation

Vincent Prat

CEA/DRF/IRFU/SAp \& UMR AIM Paris-Saclay

in collaboration with
Stéphane Mathis (CEA)
François Lignières (IRAP)
Jérôme Ballot (IRAP)
Pierre-Marie Culpin (IRAP)

July 12th, 2016

Effect of rotation on stellar oscillation modes

Slow rotators

- perturbative approach \rightarrow rotational splittings
- core/envelope rotation contrast (Beck et al., 2012; Mosser et al., 2012; Deheuvels et al., 2012, 2014, 2015)

Fast rotators: poor understanding

- no longer spherical
- perturbative methods no longer valid
- typical intermediate-mass and massive stars are concerned (e.g. δ-Scuti, γ-Doradus)
- validity of the traditional approximation?

Two solutions

- full-2D numerical computations (expensive, limited physical insight)
- asymptotic theories (approximate, but more insightful)

Asymptotic theories?
Acoustic modes (Lignières \& Georgeot, 2009; Passk et al., 2012)

- short-wavelength approximation of the wave equation
- ray trajectories studied as Hamiltonian systems
- modes from positive interference of rays
- regular patterns predicted in oscillation spectra
- successfully confronted to numerically computed modes

Pasek et al. (2012)

Gravito-inertial modes (Prat et al., 2016)

- general eikonal equation including Coriolis and centrifugal effects
- ray dynamics \rightarrow exploration of the mode properties
- next step: provide diagnosis tools

Outline

(1) Summary of the results of Prat et al. (2016)
(2) Seismic diagnoses

Outline

(1) Summary of the results of Prat et al. (2016)

- General eikonal equation
- Exploration of the ray dynamics

Seismic diagnoses

Outline

(1) Summary of the results of Prat et al. (2016)

- General eikonal equation
- Exploration of the ray dynamics

Seismic diagnoses

Wave equation for axisymmetric modes

Assumptions

- polytropic model of star
- uniform rotation
- adiabatic and inviscid oscillations
- Cowling approximation: perturbations of the gravitational potential neglected

A deceptively simple equation

$$
\Delta \hat{\Psi}=\underbrace{-\frac{\omega^{2}}{c_{s}^{2}} \hat{\Psi}}_{\text {acoustic waves }}+\underbrace{\frac{f^{2}}{\omega^{2}} \Delta_{z} \hat{\Psi}}_{\text {inertial waves }}+\underbrace{\frac{N_{0}^{2}}{\omega^{2}} \Delta_{\perp} \hat{\Psi}}_{\text {gravity waves }}+C \hat{\Psi}
$$

- C is very (very) complicated
- complex geometry because of the centrifugal deformation

WKB approximation

Principle

- wave-like solutions: $\Psi=\Re\left\{A(\vec{x}) e^{i[\Phi(\vec{x})-\omega t]}\right\}$
- $\lambda \sim\|\vec{\nabla} \Phi\|^{-1} \ll$ length scale of the variations of the background L
- $\Phi=\Lambda\left(\Phi_{0}+\frac{1}{\Lambda} \Phi_{1}+\ldots\right)$ and $A=A_{0}+\frac{1}{\Lambda} A_{1}+\ldots$, with $\Lambda=L / \lambda$

Results $\left(\vec{k}=\vec{\nabla} \Phi_{0}\right)$

- $\omega=\mathcal{O}(\Lambda):$ acoustic waves $\omega=k c_{s}$
- $\omega=\mathcal{O}(1)$: gravito-inertial waves $k^{2}=\frac{f^{2}}{\omega^{2}} k_{z}^{2}+\frac{N_{0}{ }^{2}}{\omega^{2}} k_{\perp}{ }^{2}$
- in both cases, C is dominant near the surface: back-refraction of waves

Eikonal equation

$$
\omega^{2}=\frac{f^{2} k_{z}^{2}+N_{0}{ }^{2} k_{\perp}{ }^{2}+f^{2} \cos ^{2} \Theta k_{c}{ }^{2}}{k^{2}+k_{c}^{2}}
$$

Outline

(1) Summary of the results of Prat et al. (2016)

- General eikonal equation
- Exploration of the ray dynamics

Seismic diagnoses

Ray dynamics equations

Motivation

- the eikonal equation is a PDE for Φ_{0}
- we can solve it as a PDE (but it is expensive)
- we can search for solutions along a certain path (=ray path)
- we need equations governing the ray path and the evolution of \vec{k} along it

Hamiltonian formalism

- $\omega=\omega(\vec{x}, \vec{k})$
- ray path defined by the group velocity

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=\frac{\partial \omega}{\partial k_{i}} \quad\left(k_{i}=\partial \Phi / \partial x_{i}\right)
$$

- conservation of ω requires

$$
\frac{\mathrm{d} k_{i}}{\mathrm{~d} t}=-\frac{\partial \omega}{\partial x_{i}}
$$

Visualising the phase space with Poincaré surfaces of section (PSS)

General definition and properties

- N degrees of freedom $\Rightarrow 2 \mathrm{~N}$-dimensional phase space
- PSS = intersection of all trajectories with a given (2N-1)-dimensional surface

Application

- $N=2 \Rightarrow$ PSSs are 2D
- intersecting surface: equatorial plane $\theta=\pi / 2 \rightarrow\left(r, k_{r}\right)$ coordinates
- PSSs at different frequencies allow us to scan the phase space

Types of structures

Vincent Prat (CEA-Saclay)

3 types of structures $=3$ families of rays

- pseudo-integrable structures
- island chains around periodic orbits
- chaotic zones

Low-frequency regime

Sub-inertial regime: $\omega<f$

- waves are trapped near the equatorial plane
- propagation possible near the centre
- mainly pseudo-integrable curves
- vicinity of an integrable system

Traditional approximation?

- neglect the horizontal component of the rotation vector and centrifugal deformation
- the system is integrable and separable. . .
. ... but waves cannot propagate near the centre
We need to go beyond the traditional approximation

Outline

(1) Summary of the results of Prat et al. (2016)
2) Seismic diagnoses

- Toward an integrable ray dynamics
- From rays to modes

Outline

(1) Summary of the results of Prat et al. (2016)
2) Seismic diagnoses

- Toward an integrable ray dynamics
- From rays to modes

Low-frequency approximation

Coordinates associated to the principal frame

- avoid cross terms in the eikonal equation

$$
\begin{aligned}
\mathrm{d} \beta & =\mathrm{d} s \sin \alpha+\mathrm{d} z \cos \alpha \\
\mathrm{~d} \gamma & =\mathrm{d} s \cos \alpha-\mathrm{d} z \sin \alpha
\end{aligned}
$$

- $N_{0}^{2} \sin [2(\alpha-\Theta)]=f^{2} \sin 2 \alpha$

Equatorial trapping

- $\cos ^{2} \delta=\frac{N_{0}^{2}}{N_{0}^{2}+f^{2}} \cos ^{2} \theta \ll 1$
- near the equator, iso-contours of γ and δ are very close
- $k_{\gamma} \simeq \frac{k_{\delta}}{\zeta}$, where $\zeta=r \frac{\sqrt{N_{0}^{2}+f^{2}}}{N_{0}}$

Ray dynamics

Final form of the eikonal equation

$$
\omega^{2}=\frac{f^{2} \cos ^{2} \delta\left(k_{\beta}^{2}+k_{\mathrm{c}}^{2}\right)+\left(N_{0}^{2}+f^{2}\right) \frac{k_{\delta}^{2}+m^{2}}{\zeta^{2}}}{k^{2}+k_{c}^{2}}
$$

Ray dynamics equations

- further approximation: N_{0}, ζ, and k_{c} depend only on β

$$
\begin{aligned}
\frac{\mathrm{d} \beta}{\mathrm{~d} t} & =\frac{\left(f^{2} \cos ^{2} \delta-\omega^{2}\right) k_{\beta}}{\omega\left(k^{2}+k_{c}^{2}\right)} \\
\frac{\mathrm{d} k_{\beta}}{\mathrm{d} t} & =\frac{\left\{\left[\left(N_{0}^{2}\right)^{\prime} \zeta^{2}-\left(\zeta^{2}\right)^{\prime}\left(N_{0}^{2}+f^{2}-\omega^{2}\right)\right] \frac{k_{\delta}^{2}+m^{2}}{\zeta^{4}}+\left(k_{c}^{2}\right)^{\prime}\left(f^{2} \cos ^{2} \delta-\omega^{2}\right)\right\}}{\omega\left(k^{2}+k_{c}^{2}\right)} \\
\frac{\mathrm{d} \delta}{\mathrm{~d} t} & =\frac{\left(N_{0}^{2}+f^{2}-\omega^{2}\right) k_{\delta}}{\omega \zeta^{2}\left(k^{2}+k_{c}^{2}\right)} \\
\frac{\mathrm{d} k_{\delta}}{\mathrm{d} t} & =\frac{f^{2} \sin \delta \cos \delta\left(k_{\beta}^{2}+k_{\mathrm{c}}^{2}\right)}{\omega\left(k^{2}+k_{c}^{2}\right)}
\end{aligned}
$$

Separable dynamics

New invariant: integrable system

$$
\chi=\frac{N_{0}^{2}+f^{2} \sin ^{2} \delta}{\zeta^{2}\left(k^{2}+k_{c}^{2}\right)} \quad\left(\Rightarrow \lambda=\frac{k_{\delta}^{2}+m^{2}}{1-\frac{f^{2}}{\omega^{2}} \cos ^{2} \Theta}\right)
$$

Separation of variables

$$
\begin{aligned}
k_{\beta}^{2}+k_{c}^{2} & =\frac{N_{0}^{2}+f^{2}-\omega^{2}}{\zeta^{2} \chi} \\
k_{\delta}^{2} & =\frac{\omega^{2}-f^{2} \cos ^{2} \delta}{\chi}-m^{2}
\end{aligned}
$$

- reproduces quite well the structure of low-frequency PSSs
- the traditional approximation fails near the centre

Outline

(1) Summary of the results of Prat et al. (2016)
2. Seismic diagnoses

- Toward an integrable ray dynamics
- From rays to modes

Quantisation

EBK quantisation technique

$$
\int_{C} \vec{k} \cdot \mathrm{~d} \vec{x}=2 \pi\left(p+\frac{\varepsilon}{4}\right)
$$

- \mathcal{C} is a closed contour
- p and ε are integers
- ε : Maslov index (accounts for phase-shifts due to boundary conditions)

Two independent contours \rightarrow non-linear system to solve

$$
\begin{array}{ll}
\int_{0}^{r_{s}} \sqrt{\frac{N_{0}^{2}+f^{2}-\omega^{2}}{\zeta^{2} \chi}-k_{c}^{2}} \mathrm{~d} r=\frac{\pi}{2}\left(\tilde{n}+\frac{1}{2}\right) & (\tilde{n} \sim 2 n \text { when } n \gg 1) \\
\int_{\delta_{c}}^{\frac{\pi}{2}} \sqrt{\frac{\omega^{2}-f^{2} \cos ^{2} \delta}{\chi}-m^{2}} \mathrm{~d} \delta=\frac{\pi}{2}\left(\tilde{\ell}+\frac{1}{2}\right) & \left(\tilde{\ell}=\ell_{\mu}-1\right)
\end{array}
$$

with $\delta_{\mathrm{c}}=\arccos \frac{\sqrt{\omega^{2}-m^{2} \chi}}{f}$

Period spacings

Mode frequencies (in the co-rotating frame)

$$
\omega^{2} \simeq \frac{(2 \tilde{\ell}+1) f \int_{0}^{r_{5}} \frac{N_{0}}{r} \mathrm{~d} r}{\pi\left(n+\frac{1}{2}\right)}+m^{2} \frac{\left(\int_{0}^{r_{\mathrm{s}}} \frac{N_{0}}{r} \mathrm{~d} r\right)^{2}}{\pi^{2}\left(n+\frac{1}{2}\right)^{2}}
$$

Axisymmetric modes $(m=0)$

$$
\Delta \Pi \simeq \frac{\pi^{3 / 2}}{\sqrt{2(n+1)(2 \tilde{\ell}+1) \Omega \int_{0}^{r_{s}} \frac{N_{0}}{r} \mathrm{~d} r}}
$$

- scale as $1 / \sqrt{n+1}$
- give access to $\Omega \int_{0}^{r_{5}} \frac{N_{0}}{r} \mathrm{~d} r$

Non-axisymmetric modes $(m \neq 0)$

$$
\Delta \Pi \simeq \frac{1}{m^{2}} \sqrt{\frac{2 \pi(2 \tilde{\ell}+1) \int_{0}^{r_{\mathrm{s}}} \frac{N_{0}}{r} \mathrm{~d} r}{\Omega^{3}(n+1)^{3}}}
$$

- scale as $(n+1)^{-3 / 2}$
- give access to $\int_{0}^{r_{s}} \frac{N_{0}}{r} \mathrm{~d} r / \Omega^{3}$

Summary and prospects

Two different kind of spacings

- if both are measured, Ω and $\int_{0}^{r_{s}} \frac{N_{0}}{r} \mathrm{~d} r$ can be extracted directly
- if using stellar models, $\int_{0}^{r_{s}} \frac{N_{0}}{r} \mathrm{~d} r$ can be computed: only one kind needed for Ω

Beyond the traditional approximation

- new prescription formally similar to the traditional approximation
- more accurate near the centre
- not limited to spherical models

Further developments

- comparison with numerically computed modes
- use it to interpret observed oscillation spectra
- generalisation to differential rotation?

Thank you.

References

Ballot, J., Lignières, F., Reese, D. R., \& Rieutord, M. 2010, A\&A, 518, A30 Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature, 481, 55 Deheuvels, S., Ballot, J., Beck, P. G., et al. 2015, A\&A, 580, A96 Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A\&A, 564, A27 Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19
Lignières, F. \& Georgeot, B. 2009, A\&A, 500, 1173
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A\&A, 548, A10
Pasek, M., Lignières, F., Georgeot, B., \& Reese, D. R. 2012, A\&A, 546, A11
Prat, V., Lignières, F., \& Ballot, J. 2016, A\&A, 587, A110

