Seismic diagnosis from gravity modes strongly affected by rotation

Vincent Prat

CEA/DRF/IRFU/SAp & UMR AIM Paris-Saclay

in collaboration with

Stéphane Mathis (CEA) François Lignières (IRAP) Jérôme Ballot (IRAP) Pierre-Marie Culpin (IRAP)

July 12th, 2016

Effect of rotation on stellar oscillation modes

Slow rotators

- perturbative approach ightarrow rotational splittings
- Core/envelope rotation contrast (Beck et al., 2012; Mosser et al., 2012; Deheuvels et al., 2012, 2014, 2015)

Fast rotators: poor understanding

- no longer spherical
- perturbative methods no longer valid
- typical intermediate-mass and massive stars are concerned (e.g. δ -Scuti, γ -Doradus)
- validity of the traditional approximation?

Two solutions

- full-2D numerical computations (expensive, limited physical insight)
- asymptotic theories (approximate, but more insightful)

Vincent Prat (CEA-Saclay)

KASC 2016

Asymptotic theories?

Acoustic modes (Lignières & Georgeot, 2009; Pasek et al., 2012)

- short-wavelength approximation of the wave equation
- ray trajectories studied as Hamiltonian systems
- modes from positive interference of rays
- regular patterns predicted in oscillation spectra
- successfully confronted to numerically computed modes

Pasek et al. (2012)

Gravito-inertial modes (Prat et al., 2016)

- general eikonal equation including Coriolis and centrifugal effects
- ray dynamics \rightarrow exploration of the mode properties
- next step: provide diagnosis tools

1 Summary of the results of Prat et al. (2016)

1 Summary of the results of Prat et al. (2016)

- General eikonal equation
- Exploration of the ray dynamics

1 Summary of the results of Prat et al. (2016)

- General eikonal equation
- Exploration of the ray dynamics

Wave equation for axisymmetric modes

Assumptions

- polytropic model of star
- uniform rotation
- adiabatic and inviscid oscillations
- · Cowling approximation: perturbations of the gravitational potential neglected

A deceptively simple equation

- C is very (very) complicated
- complex geometry because of the centrifugal deformation

WKB approximation

Principle

- wave-like solutions: $\Psi = \Re \left\{ A(ec{x}) e^{i[\Phi(ec{x}) \omega t]}
 ight\}$
- $\lambda \sim \| ec
 abla \Phi \|^{-1} \ll$ length scale of the variations of the background L
- $\Phi = \Lambda(\Phi_0 + \frac{1}{\Lambda}\Phi_1 + \ldots)$ and $A = A_0 + \frac{1}{\Lambda}A_1 + \ldots$, with $\Lambda = L/\lambda$

Results $(\vec{k} = \vec{\nabla} \Phi_0)$

- $\omega = \mathcal{O}(\Lambda)$: acoustic waves $\omega = kc_s$
- $\omega = \mathcal{O}(1)$: gravito-inertial waves $k^2 = \frac{f^2}{\omega^2} k_z^2 + \frac{N_0^2}{\omega^2} k_{\perp}^2$
- in both cases, C is dominant near the surface: back-refraction of waves

Eikonal equation

$$\omega^{2} = \frac{f^{2}k_{z}^{2} + N_{0}^{2}k_{\perp}^{2} + f^{2}\cos^{2}\Theta k_{c}^{2}}{k^{2} + k_{c}^{2}}$$

1 Summary of the results of Prat et al. (2016)

- General eikonal equation
- Exploration of the ray dynamics

Ray dynamics equations

Motivation

- the eikonal equation is a PDE for Φ_0
 - we can solve it as a PDE (but it is expensive)
 - we can search for solutions along a certain path (=ray path)
- ullet we need equations governing the ray path and the evolution of $ec{k}$ along it

Hamiltonian formalism

•
$$\omega = \omega(\vec{x}, \vec{k})$$

ray path defined by the group velocity

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = \frac{\partial\omega}{\partial k_i} \qquad (k_i = \partial\Phi/\partial x_i)$$

• conservation of ω requires

$$\frac{\mathrm{d}k_i}{\mathrm{d}t} = -\frac{\partial\omega}{\partial x_i}$$

Visualising the phase space with Poincaré surfaces of section (PSS)

General definition and properties

- N degrees of freedom \Rightarrow 2N-dimensional phase space
- PSS = intersection of all trajectories with a given (2N-1)-dimensional surface

Application

- $N = 2 \Rightarrow \mathsf{PSSs}$ are 2D
- intersecting surface: equatorial plane $\theta = \pi/2 \rightarrow (r, k_r)$ coordinates
- PSSs at different frequencies allow us to scan the phase space

Types of structures

3 types of structures = 3 families of rays

- pseudo-integrable structures
- island chains around periodic orbits
- chaotic zones

Low-frequency regime

Sub-inertial regime: $\omega < f$

- waves are trapped near the equatorial plane
- propagation possible near the centre
- mainly pseudo-integrable curves
- vicinity of an integrable system

Traditional approximation?

- neglect the horizontal component of the rotation vector and centrifugal deformation
- the system is integrable and separable...
- ... but waves cannot propagate near the centre

We need to go beyond the traditional approximation

1) Summary of the results of Prat et al. (2016)

- Toward an integrable ray dynamics
- From rays to modes

1) Summary of the results of Prat et al. (2016)

- Toward an integrable ray dynamics
- From rays to modes

Low-frequency approximation

Coordinates associated to the principal frame

avoid cross terms in the eikonal equation

 $d\beta = ds \sin \alpha + dz \cos \alpha$ $d\gamma = ds \cos \alpha - dz \sin \alpha$

•
$$N_0^2 \sin[2(\alpha - \Theta)] = f^2 \sin 2\alpha$$

Equatorial trapping

•
$$\cos^2 \delta = \frac{N_0^2}{N_0^2 + f^2} \cos^2 \Theta \ll 1$$

- near the equator, iso-contours of γ and δ are very close

•
$$k_{\gamma} \simeq rac{k_{\delta}}{\zeta}$$
, where $\zeta = r rac{\sqrt{N_0^2 + f^2}}{N_0}$

Ray dynamics

Final form of the eikonal equation

$$\omega^2 = \frac{f^2 \cos^2 \delta \left(k_\beta^2 + k_c^2\right) + \left(N_0^2 + f^2\right) \frac{k_\delta^2 + m^2}{\zeta^2}}{k^2 + k_c^2}$$

Ray dynamics equations

• further approximation: N_0 , ζ , and k_c depend only on β

$$\begin{split} \frac{\mathrm{d}\beta}{\mathrm{d}t} &= \frac{\left(f^2 \cos^2 \delta - \omega^2\right) k_\beta}{\omega (k^2 + k_c^2)} \\ \frac{\mathrm{d}k_\beta}{\mathrm{d}t} &= \frac{\left\{\left[(N_0^2)'\zeta^2 - (\zeta^2)' \left(N_0^2 + f^2 - \omega^2\right)\right] \frac{k_\delta^2 + m^2}{\zeta^4} + (k_c^2)' \left(f^2 \cos^2 \delta - \omega^2\right)\right\}}{\omega (k^2 + k_c^2)} \\ \frac{\mathrm{d}\delta}{\mathrm{d}t} &= \frac{\left(N_0^2 + f^2 - \omega^2\right) k_\delta}{\omega \zeta^2 (k^2 + k_c^2)} \\ \frac{\mathrm{d}k_\delta}{\mathrm{d}t} &= \frac{f^2 \sin \delta \cos \delta \left(k_\beta^2 + k_c^2\right)}{\omega (k^2 + k_c^2)} \end{split}$$

Separable dynamics

New invariant: integrable system

$$\chi = \frac{N_0^2 + f^2 \sin^2 \delta}{\zeta^2 (k^2 + k_c^2)} \qquad \left(\Rightarrow \lambda = \frac{k_\delta^2 + m^2}{1 - \frac{f^2}{\omega^2} \cos^2 \Theta} \right)$$

Separation of variables

$$k_{\beta}^{2} + k_{c}^{2} = \frac{N_{0}^{2} + f^{2} - \omega^{2}}{\zeta^{2} \chi}$$
$$k_{\delta}^{2} = \frac{\omega^{2} - f^{2} \cos^{2} \delta}{\chi} - m^{2}$$

- reproduces quite well the structure of low-frequency PSSs
- the traditional approximation fails near the centre

1) Summary of the results of Prat et al. (2016)

- Toward an integrable ray dynamics
- From rays to modes

Quantisation

EBK quantisation technique

$$\int_{\mathcal{C}} \vec{k} \cdot \mathsf{d}\vec{x} = 2\pi \left(\boldsymbol{p} + \frac{\varepsilon}{4} \right)$$

- \mathcal{C} is a closed contour
- p and ε are integers
- ϵ : Maslov index (accounts for phase-shifts due to boundary conditions)

Two independent contours \rightarrow non-linear system to solve

$$\int_{0}^{f_{s}} \sqrt{\frac{N_{0}^{2} + f^{2} - \omega^{2}}{\zeta^{2} \chi} - k_{c}^{2}} dr = \frac{\pi}{2} \left(\tilde{n} + \frac{1}{2}\right) \qquad (\tilde{n} \sim 2n \text{ when } n \gg 1)$$
$$\int_{\delta_{c}}^{\frac{\pi}{2}} \sqrt{\frac{\omega^{2} - f^{2} \cos^{2} \delta}{\chi} - m^{2}} d\delta = \frac{\pi}{2} \left(\tilde{\ell} + \frac{1}{2}\right) \qquad (\tilde{\ell} = \ell_{\mu} - 1)$$

with $\delta_{\rm c} = \arccos \frac{\sqrt{\omega^2 - m^2 \chi}}{f}$

Period spacings

Mode frequencies (in the co-rotating frame)

$$\omega^2 \simeq \frac{(2\tilde{\ell}+1)f\int_0^{r_{\rm s}}\frac{N_0}{r}\mathrm{d}r}{\pi\left(n+\frac{1}{2}\right)} + m^2 \frac{\left(\int_0^{r_{\rm s}}\frac{N_0}{r}\mathrm{d}r\right)^2}{\pi^2\left(n+\frac{1}{2}\right)^2}$$

Axisymmetric modes (m = 0)

Non-axisymmetric modes $(m \neq 0)$

$$\Delta\Pi\simeqrac{\pi^{3/2}}{\sqrt{2(n+1)(2 ilde{\ell}+1)\Omega\int_{0}^{r_{\mathrm{s}}}rac{N_{0}}{r}\mathrm{d}r}}$$

- scale as $1/\sqrt{n+1}$
- give access to $\Omega \int_0^{r_s} \frac{N_0}{r} dr$

 $\Delta \Pi \simeq \frac{1}{r^2} \sqrt{\frac{2\pi (2\tilde{\ell}+1) \int_0^{r_{\rm s}} \frac{N_0}{r} \mathrm{d}r}{\Omega^3 (r+1)^3}}$

• scale as $(n+1)^{-3/2}$ • give access to $\int_{0}^{r_{s}} \frac{N_{0}}{r} dr / \Omega^{3}$

Conclusion

Summary and prospects

Two different kind of spacings

- if both are measured, Ω and $\int_0^{r_s} \frac{N_0}{r} dr$ can be extracted directly
- if using stellar models, $\int_0^{r_s} \frac{N_0}{r} dr$ can be computed: only one kind needed for Ω

Beyond the traditional approximation

- new prescription formally similar to the traditional approximation
- more accurate near the centre
- not limited to spherical models

Further developments

- comparison with numerically computed modes
- use it to interpret observed oscillation spectra
- generalisation to differential rotation?

Thank you.

References

Ballot, J., Lignières, F., Reese, D. R., & Rieutord, M. 2010, A&A, 518, A30
Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature, 481, 55
Deheuvels, S., Ballot, J., Beck, P. G., et al. 2015, A&A, 580, A96
Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A&A, 564, A27
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19
Lignières, F. & Georgeot, B. 2009, A&A, 500, 1173
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10
Pasek, M., Lignières, F., Georgeot, B., & Reese, D. R. 2012, A&A, 546, A11
Prat, V., Lignières, F., & Ballot, J. 2016, A&A, 587, A110